×

Duality and transport for supersymmetric graphene from the hemisphere partition function. (English) Zbl 1437.81077

Summary: We use localization to compute the partition function of a four dimensional, supersymmetric, abelian gauge theory on a hemisphere coupled to charged matter on the boundary. Our theory has eight real supercharges in the bulk of which four are broken by the presence of the boundary. The main result is that the partition function is identical to that of \(\mathcal{N} = 2\) abelian Chern-Simons theory on a three-sphere coupled to chiral multiplets, but where the quantized Chern-Simons level is replaced by an arbitrary complexified gauge coupling \(\tau\). The localization reduces the path integral to a single ordinary integral over a real variable. This integral in turn allows us to calculate the scaling dimensions of certain protected operators and two-point functions of abelian symmetry currents at arbitrary values of \(\tau\). Because the underlying theory has conformal symmetry, the current two-point functions tell us the zero temperature conductivity of the Lorentzian versions of these theories at any value of the coupling. We comment on S-dualities which relate different theories of supersymmetric graphene. We identify a couple of self-dual theories for which the complexified conductivity associated to the U(1) gauge symmetry is \(\tau /2\).

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
81T60 Supersymmetric field theories in quantum mechanics
81R40 Symmetry breaking in quantum theory
58J28 Eta-invariants, Chern-Simons invariants
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] E.V. Gorbar, V.P. Gusynin and V.A. Miransky, Dynamical chiral symmetry breaking on a brane in reduced QED, Phys. Rev.D 64 (2001) 105028 [hep-ph/0105059] [INSPIRE].
[2] S.-J. Rey, Quantum phase transitions from string theory, at Strings 2007, Madrid Spain (2007).
[3] Kaplan, DB; Lee, J-W; Son, DT; Stephanov, MA, Conformality Lost, Phys. Rev., D 80, 125005 (2009)
[4] Grignani, G.; Semenoff, GW, Defect QED: Dielectric without a Dielectric, Monopole without a Monopole, JHEP, 11, 114 (2019) · Zbl 1429.81103 · doi:10.1007/JHEP11(2019)114
[5] Hsiao, W-H; Son, DT, Self-dual ν = 1 bosonic quantum Hall state in mixed-dimensional QED, Phys. Rev., B 100, 235150 (2019) · doi:10.1103/PhysRevB.100.235150
[6] Hsiao, W-H; Son, DT, Duality and universal transport in mixed-dimension electrodynamics, Phys. Rev., B 96 (2017) · doi:10.1103/PhysRevB.96.075127
[7] S. Teber, Field theoretic study of electron-electron interaction effects in Dirac liquids, habilitation, Paris, LPTHE, 2017. arXiv:1810.08428 [INSPIRE].
[8] Di Pietro, L.; Gaiotto, D.; Lauria, E.; Wu, J., 3d Abelian Gauge Theories at the Boundary, JHEP, 05, 091 (2019) · Zbl 1416.81146 · doi:10.1007/JHEP05(2019)091
[9] Herzog, CP; Huang, K-W, Boundary Conformal Field Theory and a Boundary Central Charge, JHEP, 10, 189 (2017) · Zbl 1383.81229 · doi:10.1007/JHEP10(2017)189
[10] Herzog, CP; Huang, K-W; Shamir, I.; Virrueta, J., Superconformal Models for Graphene and Boundary Central Charges, JHEP, 09, 161 (2018) · Zbl 1398.81243 · doi:10.1007/JHEP09(2018)161
[11] Pestun, V., Localization of gauge theory on a four-sphere and supersymmetric Wilson loops, Commun. Math. Phys., 313, 71 (2012) · Zbl 1257.81056 · doi:10.1007/s00220-012-1485-0
[12] Hama, N.; Hosomichi, K., Seiberg-Witten Theories on Ellipsoids, JHEP, 09, 033 (2012) · Zbl 1397.81147 · doi:10.1007/JHEP09(2012)033
[13] Hama, N.; Hosomichi, K.; Lee, S., SUSY Gauge Theories on Squashed Three-Spheres, JHEP, 05, 014 (2011) · Zbl 1296.81061 · doi:10.1007/JHEP05(2011)014
[14] Hama, N.; Hosomichi, K.; Lee, S., Notes on SUSY Gauge Theories on Three-Sphere, JHEP, 03, 127 (2011) · Zbl 1301.81133 · doi:10.1007/JHEP03(2011)127
[15] Kapustin, A.; Willett, B.; Yaakov, I., Exact Results for Wilson Loops in Superconformal Chern-Simons Theories with Matter, JHEP, 03, 089 (2010) · Zbl 1271.81110 · doi:10.1007/JHEP03(2010)089
[16] Gava, E.; Narain, KS; Muteeb, MN; Giraldo-Rivera, VI, N = 2 gauge theories on the hemisphere H S^4, Nucl. Phys., B 920, 256 (2017) · Zbl 1364.81184 · doi:10.1016/j.nuclphysb.2017.04.007
[17] M. Dedushenko, Gluing I: Integrals and Symmetries, arXiv:1807.04274 [INSPIRE]. · Zbl 1388.83787
[18] M. Dedushenko, Gluing II: Boundary Localization and Gluing Formulas, arXiv:1807.04278 [INSPIRE]. · Zbl 1388.83787
[19] Dudal, D.; Mizher, AJ; Pais, P., Exact quantum scale invariance of three-dimensional reduced QED theories, Phys. Rev., D 99 (2019)
[20] Jafferis, DL, The Exact Superconformal R-Symmetry Extremizes Z, JHEP, 05, 159 (2012) · Zbl 1348.81420 · doi:10.1007/JHEP05(2012)159
[21] Closset, C.; Dumitrescu, TT; Festuccia, G.; Komargodski, Z.; Seiberg, N., Contact Terms, Unitarity and F-Maximization in Three-Dimensional Superconformal Theories, JHEP, 10, 053 (2012) · Zbl 1397.83187 · doi:10.1007/JHEP10(2012)053
[22] Garoufalidis, S.; Kashaev, R., Evaluation of state integrals at rational points, Commun. Num. Theor. Phys., 09, 549 (2015) · Zbl 1364.81216 · doi:10.4310/CNTP.2015.v9.n3.a3
[23] Fisher, MPA; Grinstein, G.; Girvin, SM, Presence of quantum diffusion in two dimensions: Universal resistance at the superconductor-insulator transition, Phys. Rev. Lett., 64, 587 (1990) · doi:10.1103/PhysRevLett.64.587
[24] Wen, XG; Zee, A., Universal Conductance at the Superconductor — Insulator Transition, Int. J. Mod. Phys., B 4, 437 (1990) · doi:10.1142/S0217979290000206
[25] Engel, LW; Shahar, D.; Kurdak, C.; Tsui, DC, Microwave frequency dependence of integer quantum Hall effect: Evidence for finite-frequency scaling, Phys. Rev. Lett., 71, 2638 (1993) · doi:10.1103/PhysRevLett.71.2638
[26] D. Shahar, D.C. Tsui, M. Shayegan, E. Shimshoni and S.L. Sondhi, A Different View of the Quantum Hall Plateau-to-Plateau Transitions, Phys. Rev. Lett.79 (1997) 479 [cond-mat/9611011] [INSPIRE].
[27] Jeon, I.; Murthy, S., Twisting and localization in supergravity: equivariant cohomology of BPS black holes, JHEP, 03, 140 (2019) · Zbl 1414.83100 · doi:10.1007/JHEP03(2019)140
[28] Belyaev, DV; van Nieuwenhuizen, P., Rigid supersymmetry with boundaries, JHEP, 04, 008 (2008) · doi:10.1088/1126-6708/2008/04/008
[29] Pufu, SS, The F-Theorem and F-Maximization, J. Phys., A 50, 443008 (2017) · Zbl 1386.81122
[30] D. Gaiotto, Boundary F-maximization, arXiv:1403.8052 [INSPIRE].
[31] Komargodski, Z.; Schwimmer, A., On Renormalization Group Flows in Four Dimensions, JHEP, 12, 099 (2011) · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[32] Gur-Ari, G.; Hartnoll, SA; Mahajan, R., Transport in Chern-Simons-Matter Theories, JHEP, 07, 090 (2016) · Zbl 1390.81324 · doi:10.1007/JHEP07(2016)090
[33] Aharony, O.; Gur-Ari, G.; Yacoby, R., Correlation Functions of Large N Chern-Simons-Matter Theories and Bosonization in Three Dimensions, JHEP, 12, 028 (2012) · Zbl 1397.81126 · doi:10.1007/JHEP12(2012)028
[34] Gur-Ari, G.; Yacoby, R., Correlators of Large N Fermionic Chern-Simons Vector Models, JHEP, 02, 150 (2013) · Zbl 1342.81517 · doi:10.1007/JHEP02(2013)150
[35] H. Kneser, Funktionentheorie, Vandenhoeck and Ruprecht, Göttingen Germany (1958).
[36] R. Remmert, Theory of Complex Functions. Springer-Verlag, Heidelberg Germany (1991). · Zbl 0780.30001
[37] Closset, C.; Kim, H.; Willett, B., Seifert fibering operators in 3d \(\mathcal{N} = 2\) theories, JHEP, 11, 004 (2018) · Zbl 1404.81253 · doi:10.1007/JHEP11(2018)004
[38] Dimofte, T.; Gaiotto, D.; Gukov, S., Gauge Theories Labelled by Three-Manifolds, Commun. Math. Phys., 325, 367 (2014) · Zbl 1292.57012 · doi:10.1007/s00220-013-1863-2
[39] Gang, D.; Tachikawa, Y.; Yonekura, K., Smallest 3d hyperbolic manifolds via simple 3d theories, Phys. Rev., D 96 (2017)
[40] Intriligator, K.; Seiberg, N., Aspects of 3d N = 2 Chern-Simons-Matter Theories, JHEP, 07, 079 (2013) · Zbl 1342.81593 · doi:10.1007/JHEP07(2013)079
[41] Herzog, CP; Kovtun, P.; Sachdev, S.; Son, DT, Quantum critical transport, duality and M-theory, Phys. Rev., D 75 (2007)
[42] Seiberg, N.; Senthil, T.; Wang, C.; Witten, E., A Duality Web in 2 + 1 Dimensions and Condensed Matter Physics, Annals Phys., 374, 395 (2016) · Zbl 1377.81262 · doi:10.1016/j.aop.2016.08.007
[43] Giveon, A.; Kutasov, D., Seiberg Duality in Chern-Simons Theory, Nucl. Phys., B 812, 1 (2009) · Zbl 1194.81146 · doi:10.1016/j.nuclphysb.2008.09.045
[44] Lütken, CA; Ross, GG, Duality in the quantum Hall system, Phys. Rev., B 45, 11837 (1992) · doi:10.1103/PhysRevB.45.11837
[45] E. Witten, SL(2, ℤ) action on three-dimensional conformal field theories with Abelian symmetry, hep-th/0307041 [INSPIRE].
[46] Hartnoll, SA; Herzog, CP, Ohm’s Law at strong coupling: S duality and the cyclotron resonance, Phys. Rev., D 76, 106012 (2007)
[47] Herzog, CP, Lectures on Holographic Superfluidity and Superconductivity, J. Phys., A 42, 343001 (2009) · Zbl 1180.82218
[48] Hartnoll, SA; Kovtun, PK; Muller, M.; Sachdev, S., Theory of the Nernst effect near quantum phase transitions in condensed matter and in dyonic black holes, Phys. Rev., B 76, 144502 (2007) · doi:10.1103/PhysRevB.76.144502
[49] K. Damle and S. Sachdev, Nonzero-temperature transport near quantum critical points, Phys. Rev.B 56 (1997) 8714 [cond-mat/9705206] [INSPIRE].
[50] Zamolodchikov, AB, Irreversibility of the Flux of the Renormalization Group in a 2D Field Theory, JETP Lett., 43, 730 (1986)
[51] Casini, H.; Huerta, M., On the RG running of the entanglement entropy of a circle, Phys. Rev., D 85, 125016 (2012)
[52] Wess, J.; Zumino, B., Consequences of anomalous Ward identities, Phys. Lett., B 37, 95 (1971) · doi:10.1016/0370-2693(71)90582-X
[53] Osborn, H., Weyl consistency conditions and a local renormalization group equation for general renormalizable field theories, Nucl. Phys., B 363, 486 (1991) · doi:10.1016/0550-3213(91)80030-P
[54] Gerchkovitz, E.; Gomis, J.; Komargodski, Z., Sphere Partition Functions and the Zamolodchikov Metric, JHEP, 11, 001 (2014) · Zbl 1333.81171 · doi:10.1007/JHEP11(2014)001
[55] Herzog, CP; Shamir, I., How a-type anomalies can depend on marginal couplings, Phys. Rev. Lett., 124 (2020) · doi:10.1103/PhysRevLett.124.011601
[56] Bianchi, L., Marginal deformations and defect anomalies, Phys. Rev., D 100, 126018 (2019)
[57] Herzog, CP; Huang, K-W; Jensen, K., Universal Entanglement and Boundary Geometry in Conformal Field Theory, JHEP, 01, 162 (2016) · Zbl 1388.81082 · doi:10.1007/JHEP01(2016)162
[58] Pisarski, RD, Chiral Symmetry Breaking in Three-Dimensional Electrodynamics, Phys. Rev., D 29, 2423 (1984)
[59] Appelquist, TW; Bowick, MJ; Karabali, D.; Wijewardhana, LCR, Spontaneous Chiral Symmetry Breaking in Three-Dimensional QED, Phys. Rev., D 33, 3704 (1986)
[60] A.V. Kotikov and S. Teber, Critical behaviour of reduced QED_4,3and dynamical fermion gap generation in graphene, Phys. Rev.D 94 (2016) 114010 [Erratum ibid.D 99 (2019) 119902] [arXiv:1610.00934] [INSPIRE].
[61] Safdi, BR; Klebanov, IR; Lee, J., A Crack in the Conformal Window, JHEP, 04, 165 (2013) · Zbl 1342.81614 · doi:10.1007/JHEP04(2013)165
[62] Agarwal, P.; Amariti, A.; Siani, M., Refined Checks and Exact Dualities in Three Dimensions, JHEP, 10, 178 (2012) · Zbl 1397.81125 · doi:10.1007/JHEP10(2012)178
[63] Morita, T.; Niarchos, V., F-theorem, duality and SUSY breaking in one-adjoint Chern-Simons-Matter theories, Nucl. Phys., B 858, 84 (2012) · Zbl 1246.81471 · doi:10.1016/j.nuclphysb.2012.01.003
[64] Kutasov, D.; Parnachev, A.; Sahakyan, DA, Central charges and U(1)(R) symmetries in N = 1 superYang-Mills, JHEP, 11, 013 (2003) · doi:10.1088/1126-6708/2003/11/013
[65] Barnes, E.; Intriligator, KA; Wecht, B.; Wright, J., Evidence for the strongest version of the 4d a-theorem, via a-maximization along RG flows, Nucl. Phys., B 702, 131 (2004) · Zbl 1198.81148 · doi:10.1016/j.nuclphysb.2004.09.016
[66] Gaiotto, D.; Witten, E., Supersymmetric Boundary Conditions in N = 4 Super Yang-Mills Theory, J. Statist. Phys., 135, 789 (2009) · Zbl 1178.81180 · doi:10.1007/s10955-009-9687-3
[67] Chester, SM; Pufu, SS, Towards bootstrapping QED3, JHEP, 08, 019 (2016) · Zbl 1390.81498 · doi:10.1007/JHEP08(2016)019
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.