zbMATH — the first resource for mathematics

Associative, idempotent, symmetric, and order-preserving operations on chains. (English) Zbl 1456.06004
Associativity of binary operations is important because numerous algebraic structures are defined with associative operations as semigroups, groups, rings, lattices, etc. Associativity has been considered in conjunction with other properties such as idempotency or quasitriviality. The authors characterize the associative, idempotent, symmetric, and order-preserving binary operations on finite chains in terms of their associated semilattice order. They prove that the number of associative, idempotent, symmetric and order-preserving operations on an \(n\)-element chain is just the \(n\)-th Catalan number.
06A12 Semilattices
06A05 Total orders
06A07 Combinatorics of partially ordered sets
20M14 Commutative semigroups
Full Text: DOI
[1] Ackerman, N.L.: A characterization of quasitrivial n-semigroups. To appear in Algebra Universalis
[2] Aczél, J., Lectures in Functional Equations and Their Applications (2006), New York: Dover Publications, Inc., New York
[3] Alsina, C., Schweizer, B., Frank, M.J.: Associative Functions: Triangular Norms and Copulas World Scientific (2006) · Zbl 1100.39023
[4] Bancroft, E. E.: Shard Intersections and Cambrian Congruence Classes in Type A. PhD thesis, North Carolina State University (2011)
[5] Black, D., On the rationale of group decision-making, J. Polit. Econ., 56, 1, 23-34 (1948)
[6] Black, D., The Theory of Committees and Elections (1987), Dordrecht: Kluwer Academic Publishers, Dordrecht
[7] Couceiro, Miguel; Devillet, Jimmy; Marichal, Jean-Luc, Quasitrivial semigroups: characterizations and enumerations, Semigroup Forum, 98, 3, 472-498 (2018) · Zbl 07058157
[8] Couceiro, M.; Devillet, J.; Marichal, J-L, Chracterizations of idempotent discrete uninorms, Fuzzy Sets Syst., 334, 60-72 (2018) · Zbl 1380.03043
[9] Czogała, E.; Drewniak, J., Associative monotonic operations in fuzzy set theory, Fuzzy Sets Syst., 12, 3, 249-269 (1984) · Zbl 0555.94027
[10] Cintula, P., Hájek, P., Noguera, C.: (Eds). Handbook of Mathematical Fuzzy Logic College Publications (2011)
[11] Davey, BA; Priestley, H., Introduction to Lattices and Order (2002), Cambridge: Cambridge University Press, Cambridge · Zbl 1002.06001
[12] Devillet, J.; Kiss, G.; Marichal, J-L, Characterizations of quasitrivial symmetric nondecreasing associative operations, Semigroup Forum, 98, 1, 154-171 (2019) · Zbl 1454.20125
[13] Dörnte, W., Untersuchengen über einen verallgemeinerten Gruppenbegriff, Math. Z., 29, 1-19 (1928) · JFM 54.0152.01
[14] Dudek, WA; Mukhin, VV, On n-ary semigroups with adjoint neutral element, Quasigroups and Related Systems, 14, 163-168 (2006) · Zbl 1126.20048
[15] Grabisch, M.; Marichal, J-L; Mesiar, R.; Pap, E., Aggregation Functions Encyclopedia of Mathematics and Its Applications, vol. 127 (2009), Cambridge: Cambridge University Press, Cambridge
[16] Grätzer, George, Varieties of Lattices, General Lattice Theory, 295-342 (2003), Basel: Birkhäuser Basel, Basel
[17] Humberstone, L., The Connectives (2011), Cambridge: MIT Press, Cambridge
[18] Kiss, G.; Somlai, G., Associative idempotent and nondecreasing functions are reducible, Semigroup Forum, 98, 1, 140-153 (2019) · Zbl 1441.20043
[19] Kimura, N., The structure of idempotent semigroups. I., Pacific J. Math., 8, 257-275 (1958) · Zbl 0084.02702
[20] Länger, H., The free algebra in the variety generated by quasi-trivial semigroups, Semigroup Forum, 20, 1, 151-156 (1980) · Zbl 0441.20038
[21] Mclean, D., Idempotent semigroups, Amer. Math. Monthly, 61, 110-113 (1954) · Zbl 0055.01404
[22] Post, EL, Polyadic groups, Trans. Amer. Math Soc., 48, 208-350 (1940) · JFM 66.0099.01
[23] Sloane, N.J.A.: (editor) The On-Line Encyclopedia of Integer Sequences. http://www.oeis.org
[24] Stanley, RP, Enumerative Combinatorics. Vol. 2, Cambridge Studies in Advanced Mathematics, 62 (2001), Cambridge: Cambridge University Press, Cambridge
[25] Stanley, RP, Catalan Numbers (2015), Cambridge: Cambridge University Press, Cambridge
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.