×

Cross-stream migration of non-spherical particles in a second-order fluid – theories of particle dynamics in arbitrary quadratic flows. (English) Zbl 1460.76031

Summary: Particle migration in viscoelastic suspensions is vital in many applications in the biomedical community and the chemical/oil industries. Previous studies have provided insight into the motion of spherical particles in simple viscoelastic flows, yet the combined effect of more complex flow profiles and particle shapes is under-explored. Here, we develop approximate analytical expressions for the polymeric force and torque on an arbitrarily shaped particle in a second-order fluid, subject to a general quadratic flow field. This model is exact for the case when the first and second normal stress coefficients satisfy \(\psi_1=-2 \psi_2\). Under this assumption, we examine how particle shape alters cross-stream particle migration (i.e. lift) and particle orientation in both shear- and pressure-driven flows. In shear-driven flows, we observe that spheroidal particles adjust their orientation to align their longer axis along the vorticity direction, although significant deviations from slender-body theories occur for finite aspect ratios. In a slit-like pressure-driven flow, we identify scaling theories to quantify how the particle lift depends on shape for a wide variety of shapes. We find that prolate particles slowly transition to a log-rolling state as they approach the flow centre, with the lift initially being larger than that of an equal-volume sphere, but then becoming smaller as log-rolling emerges. The net effect is a smaller average migration speed for particles with larger aspect ratio. Lastly, we discuss future directions for experimental studies on particle dynamics as well as directions to extend the current work towards more complicated systems.

MSC:

76A10 Viscoelastic fluids

Software:

BEMLIB
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ardekani, A. M., Rangel, R. H. & Joseph, D. D.2007Motion of a sphere normal to a wall in a second-order fluid. J. Fluid Mech.587, 163-172. · Zbl 1141.76331
[2] Ardekani, A. M., Rangel, R. H. & Joseph, D. D.2008Two spheres in a free stream of a second-order fluid. Phys. Fluids20 (6), 063101. · Zbl 1182.76029
[3] Asghari, M., Serhatlioglu, M., Ortac, B., Solmaz, M. E. & Elbuken, C.2017Sheathless microflow cytometry using viscoelastic fluids. Sci. Rep.-UK7 (1), 1-14.
[4] Bartram, E., Goldsmith, H. L. & Mason, S. G.1975Particle motions in non-Newtonian media III. Further observations in elasticoviscous fluids. Rheol. Acta14, 776-782.
[5] Bhagat, A. A. S., Kuntaegowdanahalli, S. S., Kaval, N., Seliskar, C. J. & Papautsky, I.2010Inertial microfluidics for sheath-less high-throughput flow cytometry. Biomed. Microdevices12, 187-195.
[6] Bird, R. B., Curtiss, C. F. & Armstrong, R. C.1987Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics, John Wiley & Sons, Inc.
[7] Bird, R. B. & Wiest, J. M.1995Constitutive equations for polymeric liquids. Annu. Rev. Fluid Mech.27, 169-193.
[8] Brunn, P.1976The slow motion of a sphere in a second-order fluid. Rheol. Acta15 (3-4), 163-171. · Zbl 0336.76003
[9] Brunn, P.1977The slow motion of a rigid particle in a second-order fluid. J. Fluid Mech.82 (3), 529-547. · Zbl 0362.76006
[10] Brunn, P.1979The motion of a slightly deformed sphere in a viscoelastic fluid. Rheol. Acta18, 229-243. · Zbl 0423.76009
[11] Coleman, B. D. & Noll, W.1960An approximation theorem for functionals, with applications in continuum mechanics. Arch. Rat. Mech. Anal.6 (1), 355-370. · Zbl 0097.16403
[12] Dabade, V., Marath, N. K. & Subramanian, G.2015Effects of inertia and viscoelasticity on sedimenting anistropic particles. J. Fluid Mech.778, 133-188. · Zbl 1382.76004
[13] D’Avino, G., Greco, F. & Maffettone, P. L.2017Particle migration due to viscoelasticity of the suspending liquid and its relevance in microfluidic devices. Annu. Rev. Fluid Mech.49, 341-360. · Zbl 1359.76302
[14] D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L.2014Bistablility and metabistability scenario in the dynamics of an ellipsoid particle in a sheared viscoelastic fluid. Phys. Rev. E89, 043006.
[15] D’Avino, G., Hulsen, M. A., Greco, F. & Maffettone, P. L.2019Numerical simulations on the dynamics of a spheroid in a viscoelastic liquid in a wide-slit microchannel. J. Non-Newtonian Fluid Mech.263, 33-41.
[16] Del Giudice, F., D’Avino, G., Greco, F., Netti, P. A. & Maffettone, P. L.2015Effect of fluid rheology on particle migration in a square-shaped microchannel. Microfluid Nanofluid19, 95-104.
[17] Del Giudice, F., Sathish, S., D’Avino, G. & Shen, A. Q.2017‘From the edge to the center’: viscoelastic migration of particles and cells in a strongly shear-thinning liquid flowing in a microchannel. Anal. Chem.89, 13146-13159.
[18] Feng, J., Joseph, D. D., Glowinski, R. & Pan, T. W.1995A three dimensional computation of the force and torque on an ellipsoid settling slowly through a viscoelastic fluid. J. Fluid Mech.283, 1-16. · Zbl 0838.76007
[19] Gauthier, F., Goldsmith, H. L. & Mason, S. G.1971Particle motions in non-Newtonian media I: Couette flow. Rheol. Acta10, 344-364.
[20] Gunes, D. Z., Scirocco, R., J., M. & Vermant, J.2008Flow-induced orientation of non-spherical particles: effect of aspect ratio and medium rheology. J. Non-Newtonian Fluid Mech.155 (1), 39-50.
[21] Ho, B. P. & Leal, L. G.1976Migration of rigid spheres in a two-dimensional unidirectional shear flow of a second-order fluid. J. Fluid Mech.76, 783-799. · Zbl 0339.76057
[22] Jeffery, G. B.1922The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. Lond. A102, 161-179. · JFM 49.0748.02
[23] Johnson, S. J., Salem, A. J. & Fuller, G. G.1990Dynamics of colloidal particles in sheared, non-Newtonian fluids. J. Non-Newtonian Fluid Mech.34 (1), 89-121.
[24] Karnis, A. & Mason, S. G.1966Particle motions in sheared suspensions. XIX. Viscoelastic media. Trans. Soc. Rheol.10, 571-592.
[25] Kim, B. & Kim, J. M.2016Elasto-inertial particle focusing under the viscoelastic flow of dna solution in a square channel. Biomicrofluidics10, 024111.
[26] Kim, S.1986The motion of ellipsoids in a second order fluid. J. Non-Newtonian Fluid Mech.21 (2), 255-269. · Zbl 0594.76007
[27] Kim, S. & Karrila, S. J.2013Microhydrodynamics: Principles and Selected Applications, Courier Corporation.
[28] Leal, L. G.1975The slow motion of slender rod-like particles in a second-order fluid. J. Fluid Mech.69, 305-337. · Zbl 0302.76058
[29] Lee, D. J., Brenner, H., Youn, J. R. & Song, Y. S.2013Multiplex particle focusing via hydrodynamic force in viscoelastic fluids. Sci. Rep.-UK3, 3258.
[30] Leshansky, A. M., Bransky, A., Korin, N. & Dinnar, U.2007Tunable nonlinear viscoelastic ‘focusing’ in a microfluidic device. Phys. Rev. Lett.98, 234501.
[31] Li, M., Munoz, H. E., Schmidt, A., Guo, B., Lei, C., Goda, K. & Di Carlo, D.2016Inertial focusing of ellipsoidal Euglena gracilis cell in a stepped microchannel. Lab on a Chip16, 4458-4465.
[32] Lim, E. J., Ober, T. J., Edd, J. F., Desai, S. P., Neal, D., Bong, K. W., Doyle, P. S., Mckinley, G. H. & Toner, M.2014Inertio-elastic focusing of bioparticles in microchannels at high throughput. Nat. Commun.5, 4120.
[33] Liu, C., Guo, J., Tian, F., Yang, N., Yan, F., Ding, Y., Wei, J., Hu, G., Nie, G. & Sun, J.2017Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano11, 6968-6976.
[34] Lu, X. & Xuan, X.2015Elasto-inertial pincherd flow fractionation for continuous shape-based particle separation. Anal. Chem.87, 11523-11530.
[35] Lu, X., Zhu, L., Hua, R. & Xuan, X.2015Continuous sheath-free separation of particles by shape in viscoelastic fluids. Appl. Phys. Lett.107, 264102.
[36] Nam, J., Shin, Y., Tan, J. K. S., Lim, Y. B., Lim, C. T. & Kim, S.2016High-throughput malaria parasite separation using a viscoelastic fluid for ultrasensitive PCR detection. Lab on a Chip16, 2086-2092.
[37] Pozrikidis, C.2002A Practical Guide to Boundary Element Methods with the Software Library BEMLIB, CRC Press. · Zbl 1019.65097
[38] Rivlin, R. S. & Ericksen, J. L.1997Stress-Deformation Relations for Isotropic Materials. pp. 911-1013. Springer.
[39] Segré, G. & Silberberg, A.1961Radial particle displacements in Poiseuille flow of suspensions. Nature189, 209-210.
[40] Seo, K. W., Byeon, H. J., Huh, H. K. & Lee, S. J.2014Particle migration and single-line particle focusing in microscale pipe flow of viscoelastic fluids. RSC Adv.4, 3512-3520.
[41] Wang, S., Martin, C. P. & Kim, S.2019Improper integrals as a puzzle for creeping flow around an ellipsoid. Phys. Fluids31 (2), 021101.
[42] Yang, S., Kim, J. Y., Lee, S. J., Lee, S. S. & Kim, J. M.2011Sheathless elasto-inertial particle focusing and continuous separation in a straight rectangular microchannel. Lab on a Chip11, 266-273.
[43] Yuan, D., Zhao, Q., Yan, S., Tang, S., Alici, G., Zhang, J. & Li, W.2018Recent progress of particle migration in viscoelastic fluids. Lab on a Chip18, 551-567.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.