×

\(N\)-dimensional tensor completion for nuclear magnetic resonance relaxometry. (English) Zbl 07196101

Summary: This paper deals with tensor completion for the solution of multidimensional inverse problems arising in nuclear magnetic resonance (NMR) relaxometry. We study the problem of reconstructing an approximately low-rank tensor from a small number of noisy linear measurements. New recovery guarantees, numerical algorithms, nonuniform sampling strategies, and parameter selection methods are developed in this context. In particular, we derive a fixed point continuation algorithm for tensor completion and prove its convergence. A restricted isometry property-based tensor recovery guarantee is proved. Probabilistic recovery guarantees are obtained for sub-Gaussian measurement operators and for measurements obtained by nonuniform sampling from a Parseval tight frame. The proposed algorithm is then applied to the setting of nuclear magnetic resonance relaxometry, for both simulated and experimental data. We compare our results with basis pursuit as well as with the state-of-the-art nonsubsampled data acquisition and reconstruction approach. Our experiments indicate that tensor recovery promises to significantly accelerate \(N\)-dimensional NMR relaxometry and related experiments, enabling previously impractical experiments to be performed. Our methods could also be applied to other similar inverse problems arising in machine learning, signal and image processing, and computer vision.

MSC:

65D18 Numerical aspects of computer graphics, image analysis, and computational geometry
65R32 Numerical methods for inverse problems for integral equations
15A83 Matrix completion problems
94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] C. H. Arns, K. E. Washburn, and P. T. Callaghan, Multidimensional NMR inverse Laplace spectroscopy in petrophysics, Petrophyics, 48 (2007), pp. 380-392.
[2] R. Bai, A. Cloninger, W. Czaja, and P. Basser, Efficient \(2\) D MRI relaxometry using compressed sensing, J. Magn. Reson., 255 (2015), pp. 88-99.
[3] R. Baraniuk, M. Davenport, M. Duarte, and C. Hegde, An Introduction to Compressive Sensing, OpenStax CNX, 2014.
[4] J. Bazerque, G. Mateos, and G. Giannakis, Rank regularization and Bayesian inference for tensor completion and extrapolation, IEEE Trans. Signal Process., 61 (2013), pp. 5689-5703. · Zbl 1393.15032
[5] J. J. Benedetto, Frame decompositions, sampling, and uncertainty principle inequalities, in Wavelets: Mathematics and Applications, CRC Press, Boca Raton, FL, 1994, pp. 247-304. · Zbl 1090.94516
[6] P. Berman, O. Levi, Y. Parmet, M. Saunders, and Z. Wiesman, Laplace inversion of low-resolution NMR relaxometry data using sparse representation methods, Concepts Magn. Reson. Part A, 42 (2013), pp. 72-88.
[7] P. Berman, A. Leshem, O. Etziony, O. Levi, Y. Parmet, M. Saunders, and Z. Wiesman, Novel 1H low field nuclear magnetic resonance applications for the field of biodiesel, Biotech. Biofuels, 6 (2013), 55.
[8] M. Bouhrara, S. Clerjon, J.-L. Damez, C. Chevarin, S. Portanguen, A. Kondjoyan, and J.-M. Bonny, Dynamic MRI and thermal simulation to interpret deformation and water transfer in meat during heating, J. Agric. Food Chem., 59 (2011), pp. 1229-1235.
[9] M. Bouhrara, D. A. Reiter, H. Celik, J.-M. Bonny, V. Lukas, K. W. Fishbein, and R. G. Spencer, Incorporation of Rician noise in the analysis of biexponential transverse relaxation in cartilage using a multiple gradient echo sequence at \(3\) and \(7\) tesla, Magn. Reson. Med., 73 (2015), pp. 352-366.
[10] M. Bouhrara, D. A. Reiter, and R. G. Spencer, Bayesian analysis of transverse signal decay with application to human brain, Magn. Reson. Med., 74 (2015), pp. 785-802.
[11] M. Bouhrara and R. G. Spencer, Improved determination of the myelin water fraction in human brain using magnetic resonance imaging through Bayesian analysis of mcDESPOT, NeuroImage, 127 (2016), pp. 456-471.
[12] R. W. Brown, Y.-C. N. Cheng, E. M. Haacke, M. R. Thompson, and R. Venkatesan, Magnetic Resonance Imaging: Physical Principles and Sequence Design, Wiley, Hoboken, NJ, 2014.
[13] E. J. Candès and J. K. Romberg, Sparsity and incoherence in compressive sampling, Inverse Problems, 23 (2007), pp. 969-989. · Zbl 1120.94005
[14] E. J. Candès, J. K. Romberg, and T. Tao, Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, IEEE Trans. Inform. Theory, 52 (2004), pp. 489-509. · Zbl 1231.94017
[15] E. J. Candès and T. Tao, Decoding by linear programming, IEEE Trans. Inform. Theory, 51 (2005), pp. 4203-4215. · Zbl 1264.94121
[16] E. J. Candès and T. Tao, Near-optimal signal recovery from random projections: Universal encoding strategies?, IEEE Trans. Inform. Theory, 52 (2006), pp. 5406-5425. · Zbl 1309.94033
[17] H. Celik, M. Bouhrara, D. Reiter, K. Fishbein, and R. Spencer, Stabilization of the inverse Laplace transform of multiexponential decay through introduction of a second dimension, J. Magn. Reson., 236 (2013), pp. 134-139.
[18] A. Cloninger, Exploiting Data-Dependent Structure for Improving Sensor Acquisition and Integration, Ph.D. Thesis, University of Maryland, College Park, MD, 2014.
[19] A. Cloninger, W. Czaja, R. Bai, and P. J. Basser, Solving \(2\) D Fredholm integral from incomplete measurements using compressive sensing, SIAM J. Imaging Sci., 7 (2014), pp. 1775-1798. · Zbl 1309.65154
[20] P. Craven and G. Wahba, Smoothing noisy data with spline functions, Numer. Math., 31 (1978), pp. 377-403. · Zbl 0377.65007
[21] M. A. Davenport, M. F. Duarte, Y. C. Eldar, and G. Kutyniok, Introduction to compressed sensing, in Compressed Sensing: Theory and Applications, Cambridge University Press, Cambridge, 2012, pp. 1-64.
[22] S. Dirksen, Dimensionality reduction with subgaussian matrices: a unified theory, Found. Comput. Math., 16 (2016), pp. 1367-1396. · Zbl 1360.60031
[23] D. Donoho, Compressed sensing, IEEE Trans. Inform. Theory, 52 (2006), pp. 1289-1306. · Zbl 1288.94016
[24] Y. Eldar and G. Kutyniok, Compressed Sensing: Theory and Applications, Cambridge University Press, Cambridge, 2012.
[25] R. R. Ernst, G. Bodenhausen, and A. Wokaun, Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Oxford University Press, Oxford, 1988.
[26] M. Fazel, E. Candès, B. Recht, and P. Parrilo, Compressed sensing and robust recovery of low rank matrices, in 2008 42nd Asilomar Conference on Signals, Systems and Computers, IEEE, Piscataway, NJ, 2008, pp. 1043-1047.
[27] R. Freedman and N. Heaton, Fluid characterization using nuclear magnetic resonance logging, Petrophysics, 45 (2004), pp. 241-250.
[28] S. Gandy, B. Recht, and I. Yamada, Tensor completion and low-n-rank tensor recovery via convex optimization, Inverse Problems, 27 (2011), 025010. · Zbl 1211.15036
[29] G. H. Golub, M. Heath, and G. Wahba, Generalized cross-validation as a method for choosing a good ridge parameter, Technometrics, 21 (1979), pp. 215-223. · Zbl 0461.62059
[30] W. Hackbusch, Tensor Spaces and Numerical Tensor Calculus, Springer, Berlin, 2012. · Zbl 1244.65061
[31] A. Hafftka, Tensor Completion for Multidimensional Inverse Problems with Applications to Magnetic Resonance Relaxometry, Ph.D. Thesis, University of Maryland, College Park, MD, 2016.
[32] A. Hafftka, H. Celik, A. Cloninger, W. Czaja, and R. G. Spencer, \(2\) D sparse sampling algorithm for ND Fredholm equations with applications to NMR relaxometry, in International Conference on Sampling Theory and Applications (SampTA), IEEE, Piscataway, NJ, 2015, pp. 367-371.
[33] P. C. Hansen, Discrete Inverse Problems, SIAM, Philadelphia, 2010. · Zbl 1197.65054
[34] C. J. Hillar and L.-H. Lim, Most tensor problems are NP-hard, J. ACM, 60 (2013), 45. · Zbl 1281.68126
[35] B. Hills, Relaxometry: Two-dimensional methods, in Encyclopedia of Magnetic Resonance, Online, Wiley, New York, 2009.
[36] S. Hu, M. Lustig, A. P. Chen, J. Crane, A. Kerr, D. A. C. Kelley, R. Hurd, J. Kurhanewicz, S. J. Nelson, J. M. Pauly, and D. B. Vigneron, Compressed sensing for resolution enhancement of hyperpolarized 13c flyback 3d-mrsi, J Magn. Reson., 192 (2008), pp. 258-264.
[37] O. N. Irrechukwu, S. V. Thaer, E. H. Frank, P.-C. Lin, D. A. Reiter, A. J. Grodzinsky, and R. G. Spencer, Prediction of cartilage compressive modulus using multiexponential analysis of t2 relaxation data and support vector regression, NMR Biomed., 27 (2014), pp. 468-477.
[38] A. Jerschow and N. Müller, Suppression of convection artifacts in stimulated-echo diffusion experiments. Double-stimulated-echo experiments, J. Magn. Reson., 125 (1997), pp. 372-375.
[39] J. Keeler, Understand NMR Spectroscopy, 2nd ed., Wiley, Chichester, England, 2010.
[40] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Rev., 51 (2009), pp. 455-500. · Zbl 1173.65029
[41] A. Krishnamurthy and A. Singh, Low-rank matrix and tensor completion via adaptive sampling, Adv. Neural Inf. Process. Syst., 26 (2013), pp. 836-844.
[42] A. J. Laub, Matrix Analysis for Scientists and Engineers, SIAM, Philadelphia, 2005. · Zbl 1077.15001
[43] J. Liu, P. Musialski, P. Wonka, and J. Ye, Tensor completion for estimating missing values in visual data, IEEE Trans. Pattern Anal. Mach. Intell., 35 (2013), pp. 208-220.
[44] Y. Liu and F. Shang, An efficient matrix factorization method for tensor completion, IEEE Signal Process. Lett., 20 (2013), pp. 307-310.
[45] Y. Liu, F. Shang, W. Fan, J. Cheng, and H. Cheng, Generalized higher order orthogonal iteration for tensor learning and decomposition, IEEE Trans. Pattern Anal. Mach. Intell., 27 (2015), pp. 2551-2563.
[46] Y. Liu, F. Shang, L. Jiao, J. Cheng, and H. Cheng, Trace norm regularized CANDECOMP/PARAFAC decomposition with missing data, IEEE Trans. Cybernet., 45 (2015), pp. 2437-2448.
[47] Y.-K. Liu, Universal low-rank matrix recovery from Pauli measurements, Adv. Neural Inf. Process. Syst., 24 (2011), pp. 1638-1646.
[48] M. Lustig, SPARSE MRI, Ph.D. Thesis, Stanford University, Stanford, CA, 2008.
[49] M. Lustig, D. Donoho, and J. Pauly, Sparse MRI: The application of compressed sensing for rapid MR imaging, Magn. Reson. Med., 58 (2007), pp. 1182-1195.
[50] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, Compressed sensing MRI, IEEE Signal Process. Mag., 25 (2008), pp. 72-82.
[51] A. Mackay, K. Whittall, J. Adler, D. Li, D. Paty, and D. Graeb, In vivo visualization of myelin water in brain by magnetic resonance, Magn. Reson. Med., 31 (1994), pp. 673-677.
[52] C. Mu, B. Huang, J. Wright, and D. Goldfarb, Square deal: Lower bounds and improved relaxations for tensor recovery, Proc. Mach. Learn. Res., 32 (2014), pp. 73-81.
[53] H. Rauhut, R. Schneider, and Z. Stojanac, Low rank tensor recovery via iterative hard thresholding, in Proceedings of the 10th International Conference on Sampling Theory and Applications, 2013. · Zbl 1372.65130
[54] H. Rauhut, R. Schneider, and Z. Stojanac, Tensor completion in hierarchical tensor representations, in Compressed Sensing and its Applications, Appl. Numer. Harmon. Anal., Birkhäuser, Basel, 2015, pp. 419-450. · Zbl 1333.94023
[55] H. Rauhut, R. Schneider, and Z. Stojanac, Low rank tensor recovery via iterative hard thresholding, Linear Algebra Appl., 523 (2017), pp. 220-262. · Zbl 1372.65130
[56] H. Rauhut and Z. Stojanac, Tensor Theta Norms And Low Rank Recovery, preprint, https://arxiv.org/abs/1505.05175, 2015. · Zbl 1474.13058
[57] B. Recht, M. Fazel, and P. A. Parrilo, Guaranteed minimum-rank solutions of linear matrix equations via nuclear norm minimization, SIAM Rev., 52 (2010), pp. 471-501. · Zbl 1198.90321
[58] D. A. Reiter, P. C. Lin, K. W. Fishbein, and R. G. Spencer, Multicomponent T2 relaxation analysis in cartilage, Magn. Reson. Med., 61 (2009), pp. 803-809.
[59] D. A. Reiter, R. A. Roque, P.-C. Lin, O. Irrechukwu, S. Doty, D. Longo, N. Pleshko, and R. G. Spencer, Mapping proteoglycan-bound water in cartilage: Improved specificity of matrix assessment using multiexponential transverse relaxation analysis, Magn. Reson. Med., 65 (2011), pp. 377-384.
[60] G. Saab, R. T. Thompson, and G. D. Marsh, Multicomponent t2 relaxation of in vivo skeletal muscle, Magn. Reson. Med., 42 (1999), pp. 150-157.
[61] C. Sabett, A. Hafftka, K. Sexton, and R. G. Spencer, \(L_1, L_p, L_2\), and elastic net penalties for regularization of Gaussian component distributions in magnetic resonance relaxometry, Concepts Magn. Reson. Part. A., 46A (2018), e21427.
[62] Z. Shi, J. Han, T. Zheng, S. Deng, and J. Li, Guarantees of augmented trace norm models in tensor recovery, in Proceedings of the Twenty-Third International Joint Conference on Artificial Intelligence, AIAA Press, Palo Alto, CA, 2013, pp. 1670-1676.
[63] M. Talagrand, The Generic Chaining: Upper and Lower Bounds of Stochastic Processes, Springer, Berlin, 2006. · Zbl 1075.60001
[64] R. Tibshirani, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58 (1996), pp. 267-288. · Zbl 0850.62538
[65] R. Tomioka, Convex tensor decomposition via structured Schatten norm regularization, Adv. Neural Inf. Process. Syst., 26 (2013), pp. 1331-1339.
[66] R. Tomioka, K. Hayashi, and H. Kashima, Estimation of low-rank tensors via convex optimization, preprint, https://arxiv.org/abs/1010.0789, (2010).
[67] R. Tomioka, T. Suzuki, K. Hayashi, and H. Kashima, Statistical performance of convex tensor decomposition, in Adv. Neural Inf. Process. Syst. 24, J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K. Weinberger, eds., Curran Associates, pp. 972-980.
[68] L. Venkataramanan, Y. Song, and M. Hürlimann, Solving Fredholm integrals of the first kind with tensor product structure in 2 and 2.5 dimensions, IEEE Trans. Signal Process., 50 (2002), pp. 1017-1026. · Zbl 1369.65176
[69] L. Yang, Z.-H. Huang, and X. Shi, A fixed point iterative method for low n-rank tensor pursuit, IEEE Trans. Signal Process., 61 (2013), pp. 2952-2962. · Zbl 1393.90090
[70] M. Yuan and C.-H. Zhang, On tensor completion via nuclear norm minimization, Found. Comput. Math., 16 (2016), pp. 1031-1068. · Zbl 1378.90066
[71] M. Zhang, L. Yang, and Z.-H. Huang, Minimum n-rank approximation via iterative hard thresholding, Appl. Math. Comput., 256 (2015), pp. 860-875. · Zbl 1338.15053
[72] Q. Zhao, L. Zhang, and A. Cichocki, Bayesian cp factorization of incomplete tensors with automatic rank determination, IEEE Trans. Pattern Anal. Mach. Intell., 37 (2015), pp. 1751-1763.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.