×

Sediment suspension and bed morphology in a mean shear free turbulent boundary layer. (English) Zbl 1460.76473

Summary: We experimentally characterize turbulence in boundary layers generated by different levels of nearly isotropic homogeneous turbulence over flat impervious boundaries and over non-cohesive sediment beds with and without ripples. We use randomly actuated synthetic jet arrays (RASJA – E. A. Variano and the second author [ibid. 604, 1–32 (2008; Zbl 1151.76358)]) to generate high Reynolds number \((Re_\lambda \sim 300)\) turbulence with negligible secondary mean flows or mean bed shear. The isotropic region and the boundary layer connecting this isotropic region to the bed are investigated using particle image velocimetry measurements. Surprisingly, we observe the development of ripples on the sediment bed \((D_{50}=260~ \mu \text{m})\). We draw comparisons between the mean shear free turbulent boundary layer formed above a flat stationary solid boundary [the authors, ibid. 835, 217–251 (2018; Zbl 1421.76117)] and its sediment counterpart by considering statistical metrics including root mean square velocity fluctuations, turbulent kinetic energy, dissipation rates, production, integral scales, Reynolds stresses and spatial spectra. Using an \(8 \times 8\) RASJA, we find the damping of turbulence and dissipation rates at flat and rippled sediment beds with low levels of suspended sediments relative to an impermeable glass bed, whereas with a \(16 \times 16\) RASJA we find the enhancement of turbulence and dissipation rates of a resuspending sediment bed relative to an impermeable glass bed. We hypothesize that this may be a result of a change in direction of the bed-normal mean flows at the porous boundary. We explore a relationship between the integral length scale of the turbulence with the resulting sediment ripple spacing by varying the mean on-time of the RASJA algorithm.

MSC:

76F40 Turbulent boundary layers
76F05 Isotropic turbulence; homogeneous turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Andersen, P. S., Kays, W. M. & Moffat, R. J.1972 The turbulent boundary layer on a porous plate: an experimental sudy of the fluid mechanics for adverse free stream pressure gradients. NASA Tech. Rep. 127817.
[2] Brumley, B. H. & Jirka, G. H.1987Near-surface turbulence in a grid-stirred tank. J. Fluid Mech.183, 235-263.
[3] Buffington, J. M.1999The legend of A. F. Shields. ASCE J. Hydraul. Engng125 (4), 376-387.
[4] Butt, T. & Russell, P.1999Suspended sediment transport mechanisms in high-energy swash. Mar. Geol.161, 361-375.
[5] Calmet, I. & Magnaudet, J.2003Statistical structure of high-Reynolds-number turbulence close to the free surface of an open-channel flow. J. Fluid Mech.474, 355-378. · Zbl 1129.76324
[6] Cowen, E. A. & Monismith, S. G.1997A hybrid digital particle tracking velocimetry technique. Exp. Fluids22, 199-211.
[7] Cowen, E. A., Sou, I. M., Liu, P. L. & Raubenheimer, B.2003Particle image velocimetry measurements within a laboratory-generated swash zone. ASCE J. Engng Mech.129 (10), 1119-1129.
[8] De Angelis, V., Lombardi, P. & Banerjee, S.1997Direct numerical simulation of turbulent flow over a wavy wall. Phys. Fluids9, 2429-2442.
[9] Diplas, P., Dancey, C. L., Celik, A. O., Valyrakis, M., Greer, K. & Akar, T.2008The role of impulse on the initiation of particle movement under turbulent flow conditions. Science322 (5902), 717-720.
[10] Doron, P., Bertuccioli, L., Katz, J. & Osborn, T. R.2000Turbulence characteristics and dissipation estimates in the coastal ocean bottom boundary layer from PIV data. J. Phys. Oceanogr.31, 2108-2134.
[11] Dutton, T. A.1958 The effects of distributed suction on the development of turbulent boundary layers. Tech. Rep. 3155. Aeronautical Research Council RM.
[12] Efron, B. & Tibshirani, R.1993An Introduction to the Bootstrap. Chapman and Hall. · Zbl 0835.62038
[13] Einstein, H. A.1950 The bed-load function for sediment transportation in open channel flows. Tech. Rep. 1026. United States Department of Agriculture.
[14] Favre, A., Dumas, R. & Verollet, E.1961 Couche limite sur paroi plane poreuse avec aspiration. Tech. Rep. Comm. En. Atom. Rapp.
[15] Ferro, M.2017 Experimental study on turbulent boundary-layer flows with wall transpiration. PhD thesis, Royal Institute of Technology, Stockholm, Sweden.
[16] Finn, J. R., Li, M. & Apte, S. V.2016Particle based modelling and simulation of natural sand dynamics in the wave bottom boundary layer. J. Fluid Mech.796, 340-385. · Zbl 1462.76195
[17] Foster, D. L., Bowen, A. J., Holman, R. A. & Natoo, P.2006Field evidence of pressure gradient induced incipient motion. J. Geophys. Res.111, doi:10.1029/2004JC002863.
[18] Frank, D., D., F., Sou, I. M. & Calatoni, J.2015Incipient motion of surf zone sediments. J. Geophys. Res.120, 5710-5734.
[19] Heathershaw, A. D. & Thorne, P. D.1985Sea-bed noises reveal role of turbulent bursting phenomenon in sediment transport by tidal currents. Nature316 (25), 339-342.
[20] Hoffmans, G. J. C. M.2010Stability of stones under uniform flow. ASCE J. Hydraul. Engng136 (2), 129-136.
[21] Hopfinger, E. J. & Toly, J.-A.1976Spatially decaying turbulence and its relation to mixing across density interfaces. J. Fluid Mech.78 (1), 155-175.
[22] Hunt, J. C. R. & Graham, J. M. R.1978Free-stream turbulence near plane boundaries. J. Fluid Mech.84, 209-235. · Zbl 0365.76056
[23] Johnson, B. A.2012 Turbulent boundary layers and sediment resuspension in the absence of mean shear. Master’s thesis, Cornell University.
[24] Johnson, B. A.2016 Turbulent boundary layers and sediment suspension absent mean flow-induced shear. PhD thesis, Cornell University.
[25] Johnson, B. A. & Cowen, E. A.2018Turbulent boundary layers absent mean shear. J. Fluid Mech.835, 217-251. · Zbl 1421.76117
[26] Kennedy, J. F.1963The mechanics of dunes and antidunes in erodible-bed channels. J. Fluid Mech.16 (4), 521-546. · Zbl 0122.43602
[27] King, A. T., Tinoco, R. O. & Cowen, E. A.2012A k-𝜖 turbulence model based on the scales of vertical shear and stem wakes valid for emergent and submerged vegetated flows. J. Fluid Mech.701, 1-39. · Zbl 1248.76092
[28] Kornilov, V. I.2015Current state and prospects of researches on the control of turbulent boundary layer by air blowing. Prog. Aerosp. Sci.76, 1-23.
[29] Kramer, H.1935Sand mixtures and sand movement in fluvial models. Trans. Am. Soc. Civil Engrs100, 798-838.
[30] Lancaster, N.1989Star dunes. Prog. Phys. Geog.13, 67-91.
[31] Leary, K. C. P. & Schmeeckle, M. W.2017The importance of splat events to the spatiotemporal structure of near-bed fluid velocity and bed load motion over bed forms: laboratory experiments downstream of a backward facing step. J. Geophys. Res.122 (12), 2411-2430.
[32] Lelouvetel, J., Bigillon, F., Doppler, D., Vinkovic, I. & Champagne, J.-Y.2009Experimental investigation of ejections and sweeps involved in particle suspension. Water Resour. Res.45, doi:10.1029/2007WR006520.
[33] Liao, Q. & Cowen, E. A.2005An efficient anti-aliasing spectral continuous window shifting technique for PIV. Exp. Fluids38, 197-208.
[34] Van Maanen, B., Coco, G., Bryan, K. R. & Ruessink, B. G.2010The use of artificial neural networks to analyze and predict alongshore sediment transport. Nonlinear Process. Geophys.17, 395-404.
[35] Masselink, G. & Hughes, M.1998Field investigation of sediment transport in the swash zone. Cont. Shelf Res.18, 1179-1199.
[36] Mccorquodale, M. W. & Munro, R. J.2017Experimental study of oscillating-grid turbulence interacting with a solid boundary. J. Fluid Mech.813, 768-798. · Zbl 1383.76169
[37] Mccorquodale, M. W. & Munro, R. J.2018Analysis of intercomponent energy transfer in the interaction of oscillating-grid turbulence with an impermeable boundary. Phys. Fluids30, 015105.
[38] Mcdougall, T.1979Measurements of turbulence in a zero-mean-shear mixed layer. J. Fluid Mech.94 (3), 409-431.
[39] Mckenna, S. P. & Mcgillis, W. R.2004Observations of flow repeatability and secondary circulation in an oscillating grid-stirred tank. Phys. Fluids16 (9), 3499-3502. · Zbl 1187.76339
[40] Medina, P., Sanchez, M. A. & Redondo, J. M.2001Grid stirred turbulence: applications to the initiation of sediment motion and lift-off studies. Phys. Chem. Earth B26 (4), 299-304.
[41] Mickley, H. S. & Davis, R. S.1957 Momentum transfer for flow over a flat plate with blowing. NASA Tech. Rep. 2017.
[42] Musa, R. A., Takarrouht, S., Louge, M. Y., Xu, J. & Berberich, M. E.2014Pore pressure in a wind-swept rippled bed below the suspension threshold. J. Geophys. Res.119, 2574-2590.
[43] Nelson, J. M., Shreve, R. L., Mclean, S. R. & Drake, T. G.1995Role of near-bed turbulence structure in bed load transport and bed form mechanics. Water Resour. Res.31 (8), 2071-2086.
[44] Paintal, A. S.1971Concept of critical shear stress in loose boundary open channels. J. Hydraul Res.9 (1), 91-113.
[45] Pao, Y.-H.1965Structure of turbulent velocity and scalar fields at large wavenumbers. Phys. Fluids8 (6), 1063-1075.
[46] Perez-Alvarado, A., Mydlarski, L. & Gaskin, S.2016Effect of the driving algorithm on the turbulence generated by a random jet array. Exp. Fluids57 (2), 20.
[47] Perot, B. & Moin, P.1995aShear-free turbulent boundary layers. Part 1. Physical insights into near-wall turbulence. J. Fluid Mech.295, 199-227. · Zbl 0869.76028
[48] Petti, M. & Longo, S.2001Turbulence experiments in the swash zone. Coast. Engng Japan43, 1-24.
[49] Pope, S. B.2000Turbulent Flows. Cambridge University Press. · Zbl 0966.76002
[50] Puleo, J. A., Beach, R. A., Holman, R. A. & Allen, J. S.2000Swash zone sediment suspension and transport and the importance of bore-generated turbulence. J. Geophys. Res.105 (C7), 17021-17044.
[51] Redondo, J. M., Durrieu De Madron, X., Medina, P., Sanchez, M. A. & Schaaff, E.2001 Comparison of sediment resuspension measurements in sheared and zero-mean turbulent flows. Cont. Shelf Res21 (18-19), 2095-2103.
[52] Van Rijn, L. C.1984Sediment transport. Part I. Bed load transport. ASCE J. Hydraul. Engng110, 1431-1456.
[53] Rodriguez-Abudo, S., Foster, D. L. & Henriquez, M.2013Spatial variability of the wave bottom boundary layer over movable rippled beds. J. Geophys. Res.118, 3490-3506.
[54] Rouse, H. & Dodu, J.1955Diffusion turbulente a travers une discontinuite de densite. La Houille Blanche10, 522-532.
[55] Sanchez, M. A. & Redondo, J. M.1998Observations from grid stirred turbulence. Appl. Sci. Res.59, 243-254.
[56] Schmeeckle, M. W.2015The role of velocity, pressure, and bed stress fluctuations in bed load transport over bed forms: numerical simulation downstream of a backward-facing step. Earth Surf. Dyn. Discuss.2 (2), 715-732.
[57] Shields, A. F.1936 Anwendung der anhlichkeitsmechanik und turbulenzforschung auf die geschiebebewegung. PhD thesis, Technical University Berlin.
[58] Sleath, J. F. A.1999Conditions for plug formation in oscillatory flow. Cont. Shelf Res.19, 1643-1664.
[59] Sinclair, P. C.1968General characteristics of dust devils. J. Appl. Meteorol.8, 32-45.
[60] Spalart, P. R.1988Direct simulation of a turbulent boundary layer up to R = 1410. J. Fluid Mech.187, 61-98. · Zbl 0641.76050
[61] Stoesser, T., Braun, C., Garcia-Villalba, M. & Rodi, W.2008Turbulence structures in flow over two-dimensional dunes. ASCE J. Hydraul. Engng134 (1), 42-55.
[62] Teixeira, M. A. C. & Belcher, S. E.2000Dissipation of shear-free turbulence near boundaries. J. Fluid Mech.422, 167-191. · Zbl 1005.76049
[63] Tennekes, H.1965Similarity laws for turbulent boundary layers with suction of injection. J. Fluid Mech.21 (04), 689-703.
[64] Thomas, N. H. & Hancock, P. E.1977Grid turbulence near a moving wall. J. Fluid Mech.82, 481-496.
[65] Thompson, S. M. & Turner, J. S.1975Mixing across an interface due to turbulence generated by an oscillating grid. J. Fluid Mech.67 (2), 349-368.
[66] Traykovski, P., Hay, A. E., Irish, J. D. & Lynch, J. F.1999Geometry, migration, and evolution of wave orbital ripples at leo-15. J. Geophys. Res.104 (C1), 1505-1524.
[67] Tsai, C. H. & Lick, W.1986A portable device for measuring sediment resuspension. J. Great Lakes Res.12 (4), 314-321.
[68] Turner, J. S.1968The influence of molecular diffusivity on turbulent entrainment across a density interface. J. Fluid Mech.33, 639-656.
[69] Uzkan, T. & Reynolds, W. C.1967A shear-free turbulent boundary layer. J. Fluid Mech.28, 803-821.
[70] Variano, E. A., Bodenschatz, E. & Cowen, E. A.2004A random synthetic jet array driven turbulence tank. Exp. Fluids37, 613-615.
[71] Variano, E. A. & Cowen, E. A.2008A random-jet-stirred turbulence tank. J. Fluid Mech.604, 1-32. · Zbl 1151.76358
[72] Voermans, J. J., Ghisalberti, M. & Ivey, G. N.2018The hydrodynamic response of the sediment-water interface to coherent turbulent motions. Geophys. Res. Lett.45 (19), 10520-10527.
[73] Van Der Werf, J. J., Doucette, J. S., O’Donoghue, T. O. & Ribberink, J. S.2007Detailed measurements of velocities and suspended sand concentrations over full-scale ripples in regular oscillatory flows. J. Geophys. Res.112, FO2012.
[74] Westerweel, J.1994Efficient detection of spurious vectors in particle image velocimetry data. Exp. Fluids16, 236-247.
[75] Yager, E. M., Schmeeckle, M. W. & Badoux, A.2018Resistance is not futile: grain resistance controls on observed critical shields stress variations. J. Geophys. Res.123 (12), 3308-3322.
[76] Zhang, D., Narteau, C., Rozier, O. & Courrech Du Pont, S.2012Morphology and dynamics of star dunes from numerical modelling. Nature Geosci. Lett.5, 463-467.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.