×

Effective elastic moduli of nonspherical particle-reinforced composites with inhomogeneous interphase considering graded evolutions of elastic modulus and porosity. (English) Zbl 1441.74070

Summary: Recent experimental studies have found that interphase between particles and matrix possesses inhomogeneous configurations of elastic modulus and porosity. Such inhomogeneous properties of interphase play an important role in macroscopic mechanical properties of particle-reinforced composites (PRCs). In this work, a comprehensive micromechanical framework is devised to predict the elastic properties of PRCs containing spheroidal particles and their surrounding inhomogeneous interphase zones with the graded evolutions of elastic moduli and porosity. In the present framework, the elastic modulus gradient of interphase varies in terms of a power-law and its porosity gradient is characterized by virtue of a semi-empirical model originated from the test of cementitious composite experiments. The elastic properties of two-phase PRCs with aligned and randomly distributed spheroidal inclusions are first described through the double-inclusion model. The inhomogeneous properties of interphase are then incorporated into the prediction of the overall elastic modulus of PRCs by using the combination of the generalized self-consistent scheme with the double-inclusion model, which is essentially a general \(n\)-phase graded spheroid model. Comparison with experimental data indicates this proposed micromechanical framework is a reliable means to evaluate the elastic properties of PRCs. Furthermore, the predicted results elucidate the coupled effects of elasticity and porosity gradients in the interphase, spheroidal particle size and shape, and water-cement ratio have significantly impacts on the effective elastic modulus of PRCs, suggesting that the properties of such materials can be tailored via proper composite engineering and design.

MSC:

74F10 Fluid-solid interactions (including aero- and hydro-elasticity, porosity, etc.)
74A50 Structured surfaces and interfaces, coexistent phases
74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Xie, Y.; Corr, D. J.; Jin, F.; Zhou, H.; Shah, S. P., Experimental study of the interfacial transition zone (ITZ) of model rock-filled concrete (RFC), Cem. Concr. Compos., 55, 223-231 (2015)
[2] Sáez del Bosque, I. F.; Zhu, W.; Howind, T.; Matías, A.; Sánchez de Rojas, M. I.; Medina, C., Properties of interfacial transition zones (ITZs) in concrete containing recycled mixed aggregate, Cem. Concr. Compos., 81, 25-34 (2017)
[3] Scrivener, K. L.; Crumbie, A. K.; Laugesen, P., The interfacial transition zone (ITZ) between cement paste and aggregate in concrete, Interf. Sci., 12, 4, 411-421 (2004)
[4] Jebli, M.; Jamin, F.; Malachanne, E.; Garcia-Diaz, E.; EI Youssoufi, M. S., Experimental characterization of mechanical properties of the cement-aggregate interface in concrete, Constr. Build. Mater., 161, 16-25 (2018)
[5] Giraud, A.; Hoxha, D.; Do, D. P.; Magnenet, V., Effect of pore shape on effective porothermoelastic properties of isotropic rocks, Int. J. Solids Struct., 45, 1, 1-23 (2008) · Zbl 1167.74501
[6] Giraud, A.; Nguyen, N. B.; Grgic, D., Effective poroelastic coefficients of isotropic oolitic rocks with micro and meso properties, Internat. J. Engrg. Sci., 58, 57-77 (2012) · Zbl 06923641
[7] Zhu, Z. G.; Xu, W. X.; Chen, H., The fraction of overlapping interphase around 2D and 3D polydisperse non-spherical particles: Theoretical and numerical models, Comput. Methods Appl. Mech. Engrg., 345, 728-747 (2019) · Zbl 1440.74261
[8] Christensen, R. M.; Lo, K. H., Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, 27, 4, 315-330 (1979) · Zbl 0419.73007
[9] Liu, Z.; Bessa, M. A.; Liu, W. K., Self-consistent clustering analysis: an efficient multi-scale scheme for inelastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 306, 319-341 (2016) · Zbl 1436.74070
[10] Xu, W. X.; Ma, H. F.; Ji, S. Y.; Chen, H. S., Analytical effective elastic properties of particulate composites with soft interfaces around anisotropic particles, Compos. Sci. Technol., 129, 10-18 (2016)
[11] Giordano, S., Nonlinear effective behavior of a dispersion of randomly oriented coated ellipsoids with arbitrary temporal dispersion, Internat. J. Engrg. Sci., 98, 14-35 (2016) · Zbl 1423.74213
[12] Shi, C.; Tu, Q.; Fan, H.; Rios, C. A.O.; Li, S. F., Interphase models for nanoparticle-polymer composites, J. Nanomech. Micromech., 6, 2, 04016003 (2016)
[13] Hori, M.; Nemat-Nasser, S., Double-inclusion model and overall moduli of multi-phase composites, Mech. Mater., 14, 3, 189-206 (1993)
[14] Lu, P.; Leong, Y. W.; Pallathadka, P. K.; He, C. B., Effective moduli of nanoparticle reinforced composites considering interphase effect by extended double-inclusion model-Theory and explicit expressions, Internat. J. Engrg. Sci., 73, 33-55 (2013) · Zbl 06976180
[15] Xu, W. X.; Wu, F.; Jiao, Y.; Liu, M., A general micromechanical framework of effective moduli for the design of nonspherical nano- and micro-particle reinforced composites with interface properties, Mater. Des., 127, 162-172 (2017)
[16] Xu, W. X.; Zhang, D.; Lan, P.; Jiao, Y., Multiple-inclusion model for the transport properties of porous composites considering coupled effects of pores and interphase around spheroidal particles, Int. J. Mech. Sci., 150, 610-616 (2019)
[17] Xu, W. X.; Jia, M. K.; Zhu, Z. G.; Liu, M.; Lei, D.; Gou, X. F., N-phase micromechanical framework for the conductivity and elastic modulus of particulate composites: Design to microencapsulated phase change materials (mpcms)-cementitious composites, Mater. Des., 145, 108-115 (2018)
[18] Pham, D. C.; Torquato, S., Strong-contrast expansions and approximations for the effective conductivity of isotropic multiphase composites, J. Appl. Phys., 94, 10, 6591-6602 (2003)
[19] Xu, W. X.; Xu, B.; Guo, F., Elastic properties of particle-reinforced composites containing nonspherical particles of high packing density and interphase: DEM-FEM simulation and micromechanical theory, Comput. Methods Appl. Meth. Engrg., 326, 122-143 (2017) · Zbl 1439.74098
[20] García-Macías, E.; Castro-Triguero, R.; Sáez, A.; Ubertini, F., 3D mixed micromechanics-FEM modelling of piezoresistive carbon nanotube smart concrete, Comput. Methods Appl. Meth. Engrg., 340, 396-423 (2018) · Zbl 1440.74254
[21] Kachanov, M.; Sevostianov, I., Effective Properties of Heterogeneous Materials (2013), Springer: Springer New York
[22] Xu, W. X.; Sun, H.; Chen, W.; Chen, H., Transport properties of concrete-like granular materials interacted by their microstructures and particle components, Internat. J. Modern Phys. B, 32, 1840011 (2018)
[23] Lutz, M. P.; Zimmerman, R. W., Effect of the interphase zone on the bulk modulus of a particulate composite, J. Appl. Mech., 63, 4, 855-861 (1996) · Zbl 0893.73037
[24] Lutz, M. P.; Monteiro, P. J.M.; Zimmerman, R. W., Inhomogeneous interfacial transition zone model for the bulk modulus of mortar, Cem. Concr. Res., 27, 1113-1122 (1997)
[25] Lutz, M. P.; Zimmerman, R. W., Effect of an inhomogeneous interphase zone on the bulk modulus and conductivity of a particulate composite, Int. J. Solids Struct., 42, 2, 429-437 (2005) · Zbl 1081.74038
[26] Lutz, M. P.; Zimmerman, R. W., Effect of the interphase zone on the conductivity or diffusivity of a particulate composite using Maxwell’s homogenization method, Internat. J. Engrg. Sci., 98, 51-59 (2016) · Zbl 06983735
[27] Shen, L.; Li, J., Homogenization of a fibre/sphere with an inhomogeneous interphase for the effective elastic moduli of composites, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 461, 2057, 1475-1504 (2005)
[28] Sevostianov, I.; Kachanov, M., Effect of interphase layers on the overall elastic and conductive properties of matrix composites, Applications to nanosized inclusion, Int. J. Solids Struct., 44, 3-4, 1304-1315 (2007) · Zbl 1124.74041
[29] Sburlati, R.; Cianci, R., Interphase zone effect on the spherically symmetric elastic response of a composite material reinforced by spherical inclusions, Int. J. Solids Struct., 71, 91-98 (2015)
[30] Sburlati, R.; Cianci, R.; Kashtalyan, M., Hashin’s bounds for elastic properties of particle-reinforced composites with graded interphase, Int. J. Solids Struct., 138, 224-235 (2018)
[31] Xu, W. X.; Jia, M. K.; Gong, Z., Thermal conductivity and tortuosity of porous composites considering percolation of porous network: From spherical to polyhedral pores, Compos. Sci. Technol., 167, 134-140 (2018)
[32] Xu, W. X.; Jiao, Y., Theoretical framework for percolation threshold, tortuosity and transport properties of porous materials containing 3d non-spherical pores, Int. J. Eng. Sci., 134, 31-46 (2019) · Zbl 1423.82012
[33] Zheng, J. J.; Zhou, X.; Jin, X., An n-layered spherical inclusion model for predicting the elastic moduli of concrete with inhomogeneous ITZ, Cem. Concr. Compos., 34, 5, 716-723 (2012)
[34] Hervé-Luanco, E.; Joannès, S., Multiscale modelling of transport phenomena for materials with n-layered embedded fibres. Part I: Analytical and numerical-based approaches, Int. J. Solids Struct., 97-98, 625-636 (2016)
[35] Sabiston, T.; Mohammadi, M.; Cherkaoui, M.; Lévesque, J.; Inal, K., Micromechanics based elasto-visco-plastic response of long fibre composites using functionally graded interphases at quasi-static and moderate strain rates, Composites B, 100, 31-43 (2016)
[36] Xu, W. X.; Wu, Y.; Jia, M. K., Elastic dependence of particle-reinforced composites on anisotropic particle geometries and reinforced/weak interphase microstructures at nano- and micro-scales, Compos. Struct., 203, 124-131 (2018)
[37] Eshelby, J. D., The determination of the elastic field of an ellipsoidal inclusion, and related problems, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 241, 1226, 376-396 (1957) · Zbl 0079.39606
[38] Yang, C. C., Effect of the transition zone on the elastic moduli of mortar, Cem. Concr. Res., 28, 5, 727-736 (1998)
[39] Pavanello, F.; Manca, F.; Palla, P. L.; Giordano, S., Generalized interface models for transport phenomena: Unusual scale effects in composite nanomaterials, J. Appl. Phys., 112, 8, 084306 (2012)
[40] Pavanello, F.; Giordano, S., How imperfect interfaces affect the nonlinear transport properties in composite nanomaterials, J. Appl. Phys., 113, 15, 154310 (2013)
[41] Le Quang, H.; He, Q.-C.; Bonnet, G., Eshelby’s tensor fields and effective conductivity of composites made of anisotropic phases with Kapitza’s interface thermal resistance, Phil. Mag., 91, 25, 3358-3392 (2011)
[42] Giordano, S.; Palla, P. L.; Colombo, L., Effective permittivity of materials containing graded ellipsoidal inclusions, Eur. Phys. J. B, 66, 29-35 (2008)
[43] Nemat-Nasser, S.; Hori, M., Overall Properties of Heterogeneous Materials (1999), Elsevier: Elsevier Amsterdam · Zbl 0924.73006
[44] Crumbie, A. K., Characterization of the microstructure of concrete (1994), Imperial College: Imperial College London, (Ph.D. thesis)
[45] Hansen, T. C., Physical structure of hardened cement paste. A classical approach, Mater. Struct., 19, 6, 423-436 (1986)
[46] Walpole, L. J., Elastic behaviour of composite materials: theoretical foundations, Adv. Appl. Mech., 21, 169-242 (1981) · Zbl 0512.73056
[47] Benveniste, Y., A new approach to the application of Mori-Tanaka’s theory in composite materials, Mech. Mater., 6, 147-157 (1987)
[48] Sun, Zh.; Scherer, G. W., Pore size and shape in mortar by thermoporometry, Cem. Concr. Res., 40, 5, 740-751 (2010)
[49] Wang, L. B.; Wang, X. R.; Mohammad, L.; Abadie, C., Unified method to quantify aggregate shape angularity and texture using Fourier analysis, J. Mater. Civ. Eng., 17, 5, 498-504 (2005)
[50] Chen, S. J.; Li, W. G.; Ruan, C. K.; Sagoe-Crentsil, K.; Duan, W. H., Pore shape analysis using centrifuge driven metal intrusion: Indication on porosimetry equations, hydration and packing, Constr. Build. Mater., 154, 95-104 (2017)
[51] Pabst, W.; Gregorová, E., Conductivity of porous materials with spheroidal pores, J. Eur. Ceram. Soc., 34, 11, 2757-2766 (2014)
[52] Xu, W. X.; Zhu, Z. G.; Zhang, D., Continuum percolation-based tortuosity and thermal conductivity of soft superball systems: shape dependence from octahedra via spheres to cubes, Soft Matter, 14, 43, 8684-8691 (2018)
[53] Markov, M.; Levin, V.; Mousatov, A.; Kazatchenko, E., Generalized DEM model for the effective conductivity of a two-dimensional percolating medium, Internat. J. Engrg. Sci., 58, 78-84 (2012) · Zbl 06923642
[54] Coussy, O., Poromechanics (2004), John Wiley & Sons: John Wiley & Sons New York
[55] Castañeda, P. P.; Willis, J. R., The effect of spatial distribution on the effective behavior of composite materials and cracked media, J. Mech. Phys. Solids, 43, 12, 1919-1951 (1995) · Zbl 0919.73061
[56] Giordano, S., Nonlinear effective properties of heterogeneous materials with ellipsoidal microstructure, Mech. Mater., 105, 16-28 (2017)
[57] Ramesh, G.; Sotelino, E. D.; Chen, W. F., Effect of transition zone on elastic moduli of concrete materials, Cem. Concr. Res., 26, 4, 611-622 (1996)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.