×

A NURBS-based inverse analysis of thermal expansion induced morphing of thin shells. (English) Zbl 1441.74119

Summary: Soft, active materials have been widely studied due to their ability to undergo large, complex shape changes in response to both mechanical and non-mechanical external stimuli. However, the vast majority of such studies has focused on investigating the forward problem, i.e. determining the shape changes that result from the applied stimuli. In contrast, very little work has been done to solve the inverse problem, i.e. that of identifying the external loads and stimuli that are needed to generate desired shapes and morphological changes. In this work, we present a new inverse methodology to study residual thermal expansion induced morphological changes in geometric composites made of soft, thin shells. In particular, the method presented in this work aims to determine the prescribed external stimuli needed to reconstruct a specific target shape, with a specific focus and interest in morphological changes from two-dimensional (2D) to three-dimensional (3D) shapes by considering the external stimuli within a thermohyperelastic framework. To do so, we utilize a geometrically exact, rotation-free Kirchhoff-Love shell formulation discretized by NURBS-based shape functions. We show that the proposed method is capable of identifying the stimuli, including cases where thermal expansion induced shape changes involving elastic softening occur in morphing from the initially flat 2D to non-planar 3D shapes. Validation indicates that the reconstructed shapes are in good agreement with the target shape.

MSC:

74K25 Shells
65D07 Numerical computation using splines
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74F05 Thermal effects in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Stuart, M. A.C.; Huck, W. T.; Genzer, J.; Müller, M.; Ober, C.; Stamm, M.; Sukhorukov, G. B.; Szleifer, I.; Tsukruk, V. V.; Urban, M.; Winnik, F., Emerging applications of stimuli-responsive polymer materials, Nat. Mater., 9, 2, 101 (2010)
[2] Ionov, L., Soft microorigami: Self-folding polymer films, Soft Matter, 7, 15, 6786-6791 (2011)
[3] Forterre, Y.; Skotheim, J. M.; Dumais, J.; Mahadevan, L., How the Venus flytrap snaps, Nature, 433, 7024, 421 (2005)
[4] Heer, N. C.; Miller, P. W.; Chanet, S.; Stoop, N.; Dunkel, J.; Martin, A. C., Actomyosin-based tissue folding requires a multicellular myosin gradient. development, dev-146761 (2017)
[5] Pezzulla, M.; Stoop, N.; Steranka, M. P.; Bade, A. J.; Holmes, D. P., Curvature-induced instabilities of shells, Phys. Rev. Lett., 120, 4, Article 048002 pp. (2018)
[6] Katifori, E.; Alben, S.; Cerda, E.; Nelson, D. R.; Dumais, J., Foldable structures and the natural design of pollen grains, Proc. Natl. Acad. Sci., 107, 17, 7635-7639 (2010)
[7] Lim, H. W.G.; Wortis, M.; Mukhopadhyay, R., Stomatocyte – discocyte – echinocyte sequence of the human red blood cell: Evidence for the bilayer – couple hypothesis from membrane mechanics, Proc. Natl. Acad. Sci., 99, 26, 16766-16769 (2002)
[8] Pezzulla, M.; Shillig, S. A.; Nardinocchi, P.; Holmes, D. P., Morphing of geometric composites via residual swelling, Soft Matter, 11, 29, 5812-5820 (2015)
[9] Klein, Y.; Efrati, E.; Sharon, E., Shaping of elastic sheets by prescription of non-Euclidean metrics, Science, 315, 5815, 1116-1120 (2007) · Zbl 1226.74013
[10] Pezzulla, M.; Stoop, N.; Jiang, X.; Holmes, D. P., Curvature-driven morphing of non-Euclidean shells, Proc. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 473, 2201, Article 20170087 pp. (2017) · Zbl 1404.74098
[11] Kim, J.; Hanna, J. A.; Byun, M.; Santangelo, C. D.; Hayward, R. C., Designing responsive buckled surfaces by halftone gel lithography, Science, 335, 1201-1205 (2012) · Zbl 1355.74027
[12] Pezzulla, M.; Smith, G. P.; Nardinocchi, P.; Holmes, D. P., Geometry and mechanics of thin growing bilayers, Soft Matter, 12, 19, 4435-4442 (2016)
[13] Mora, T.; Boudaoud, A., Buckling of swelling gels, Eur. Phys. J. E, 20, 2, 119-124 (2006)
[14] Gemmer, J. A.; Venkataramani, S. C., Shape selection in non-Euclidean plates, Physica D, 240, 19, 1536-1552 (2011) · Zbl 1419.74159
[15] Kim, J.; Hanna, J. A.; Hayward, R. C.; Santangelo, C. D., Thermally responsive rolling of thin gel strips with discrete variations in swelling, Soft Matter, 8, 8, 2375-2381 (2012)
[16] Efrati, E.; Sharon, E.; Kupferman, R., Elastic theory of unconstrained non-Euclidean plates, J. Mech. Phys. Solids, 57, 4, 762-775 (2009) · Zbl 1306.74031
[17] Kiendl, J.; Bletzinger, K. U.; Linhard, J.; Wüchner, R., Isogeometric shell analysis with Kirchhoff-Love elements, Comput. Methods Appl. Mech. Engrg., 198, 49-52, 3902-3914 (2009) · Zbl 1231.74422
[18] Benson, D. J.; Bazilevs, Y.; Hsu, M. C.; Hughes, T. J.R., Isogeometric shell analysis: the Reissner-Mindlin shell, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 276-289 (2010) · Zbl 1227.74107
[19] Wall, W. A.; Frenzel, M. A.; Cyron, C., Isogeometric structural shape optimization, Comput. Methods Appl. Mech. Engrg., 197, 33-40, 2976-2988 (2008) · Zbl 1194.74263
[20] Kiendl, J.; Schmidt, R.; Wüchner, R.; Bletzinger, K. U., Isogeometric shape optimization of shells using semi-analytical sensitivity analysis and sensitivity weighting, Comput. Methods Appl. Mech. Engrg., 274, 148-167 (2014) · Zbl 1296.74082
[21] Seo, Y. D.; Kim, H. J.; Youn, S. K., Shape optimization and its extension to topological design based on isogeometric analysis, Int. J. Solids Struct., 47, 11-12, 1618-1640 (2010) · Zbl 1194.74275
[22] Ghasemi, H.; Park, H. S.; Rabczuk, T., A level-set based IGA formulation for topology optimization of flexoelectric materials, Comput. Methods Appl. Mech. Engrg., 313, 239-258 (2017) · Zbl 1439.74414
[23] Bischoff, M.; Ramm, E.; Irslinger, J., Models and finite elements for thin-walled structures, Encyclopedia of Computational Mechanics, 1-86 (2018)
[24] Budarapu, P. R.; Reinoso, J.; Paggi, M., Concurrently coupled solid shell-based adaptive multiscale method for fracture, Comput. Methods Appl. Mech. Engrg., 319, 338-365 (2017) · Zbl 1439.74345
[25] Bazilevs, Y.; Pigazzini, M. S.; Ellison, A.; Kim, H., A new multi-layer approach for progressive damage simulation in composite laminates based on isogeometric analysis and Kirchhoff? Love shells. Part I: Basic theory and modeling of delamination and transverse shear, Comput. Mech., 62, 3, 563-585 (2018) · Zbl 1446.74163
[26] Echter, R.; Bischoff, M., Numerical efficiency, locking and unlocking of NURBS finite elements, Comput. Methods Appl. Mech. Engrg., 199, 5-8, 374-382 (2010) · Zbl 1227.74068
[27] Echter, R.; Oesterle, B.; Bischoff, M., A hierarchic family of isogeometric shell finite elements, Comput. Methods Appl. Mech. Engrg., 254, 170-180 (2013) · Zbl 1297.74071
[28] Leonetti, L.; Liguori, F.; Magisano, D.; Garcea, G., An efficient isogeometric solid-shell formulation for geometrically nonlinear analysis of elastic shells, Comput. Methods Appl. Mech. Engrg., 331, 159-183 (2018) · Zbl 1439.74176
[29] Doi, M., Gel dynamics, J. Phys. Soc. Japan, 78, 5 (2009), 052001-052001
[30] Chester, S. A.; Di Leo, L. A., Finite element implementation of a coupled diffusion-deformation theory for elastomeric gels, Int. J. Solids Struct., 52, 1-18 (2015)
[31] Tanaka, T.; Fillmore, D. J., Kinetics of swelling of gels, J. Chem. Phys., 70, 3, 1214-1218 (1979)
[32] Chester, S. A.; Anand, L., A thermo-mechanically coupled theory for fluid permeation in elastomeric materials: Application to thermally responsive gels, J. Mech. Phys. Solids, 59, 10, 1978-2006 (2011) · Zbl 1270.74057
[33] Lucantonio, A.; Teresi, L.; DeSimone, A., Continuum theory of swelling material surfaces with applications to thermo-responsive gel membranes and surface mass transport, J. Mech. Phys. Solids, 89, 96-109 (2016)
[34] Amar, M. B.; Goriely, A., Growth and instability in elastic tissues, J. Mech. Phys. Solids, 53, 10, 2284-2319 (2005) · Zbl 1120.74336
[35] Naghdi, P. M., The theory of shells and plates, (Flugge’s Handbuch der Physik, vol. VI a/C (1972), Truesdell)
[36] Steigmann, D. J., On the relationship between the Cosserat and Kirchhoff-Love theories of elastic shells, Math. Mech. Solids, 4, 3, 275-288 (1999) · Zbl 1001.74588
[37] Duong, T. X.; Roohbakhshan, F.; Sauer, R. A., A new rotation-free isogeometric thin shell formulation and a corresponding continuity constraint for patch boundaries, Comput. Methods Appl. Mech. Engrg., 316, 43-83 (2017) · Zbl 1439.74409
[38] Sauer, R. A.; Ghaffari, R.; Gupta, A., The multiplicative deformation split for shells with application to growth, chemical swelling, thermoelasticity, viscoelasticity and elastoplasticity (2018), arXiv preprint arXiv:1810.10384
[39] Holzapfel, G., Nonlinear Solid Mechanics: A Continuum Approach for Engineering (2000), John Wiley & Sons, Ltd.: John Wiley & Sons, Ltd. West Sussex, England · Zbl 0980.74001
[40] Sahu, A.; Sauer, R. A.; Mandadapu, K. K., Irreversible thermodynamics of curved lipid membranes, Phys. Rev. E, 96, 4, Article 042409 pp. (2017)
[41] Sauer, R. A.; Duong, T. X., On the theoretical foundations of thin solid and liquid shells, Math. Mech. Solids, 22, 3, 343-371 (2015) · Zbl 1373.74069
[42] Vu-Bac, N.; Duong, T. X.; Lahmer, T.; Zhuang, X.; Sauer, R. A.; Park, H. S.; Rabczuk, T., A NURBS-based inverse analysis for reconstruction of nonlinear deformations of thin shell structures, Comput. Methods Appl. Mech. Engrg., 331, 427-455 (2018) · Zbl 1439.74473
[43] Borden, M. J.; Scott, M. A.; Evans, J. A.; Hughes, T. J.R., Isogeometric finite element data structures based on Bezier extraction of NURBS, Internat. J. Numer. Methods Engrg., 87, 1-5, 15-47 (2011) · Zbl 1242.74097
[44] Sauer, R. A., On the computational modeling of lipid bilayers using thin-shell theory, (In the Role of Mechanics in the Study of Lipid Bilayers (2018), Springer: Springer Cham), 221-286
[45] Nanthakumar, S. S.; Lahmer, T.; Zhuang, X.; Zi, G.; Rabczuk, T., Detection of material interfaces using a regularized level set method in piezoelectric structures, Inverse Probl. Sci. Eng., 24, 1, 153-176 (2016)
[46] Svanberg, K., The method of moving asymptotes - a new method for structural optimization, Internat. J. Numer. Methods Engrg., 24, 2, 359-373 (1987) · Zbl 0602.73091
[47] Haftka, R. T.; Gürdal, Z., Elements of Structural Optimization (2012), Springer Science & Business Media
[48] Hughes, T. J.R.; Cottrell, J. A.; Bazilevs, Y., Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement, Comput. Methods Appl. Mech. Engrg., 194, 39-41, 4135-4195 (2005) · Zbl 1151.74419
[49] Sauer, R. A.; Duong, T. X.; Mandadapu, K. K.; Steigmann, D. J., A stabilized finite element formulation for liquid shells and its application to lipid bilayers, J. Comput. Phys., 330, 436-466 (2017) · Zbl 1378.74066
[50] SudhirSastry, Y. B.; Krishna, Y.; Budarapu, P. R., Parametric studies on buckling of thin walled channel beams, Comput. Mater. Sci., 96, 416-424 (2015)
[51] SudhirSastry, Y. B.; Budarapu, P. R.; Madhavi, N.; Krishna, Y., Buckling analysis of thin wall stiffened composite panels, Comput. Mater. Sci., 96, 459-471 (2015)
[52] Budarapu, P. R.; Kumar, S.; Prusty, B. G.; Paggi, M., Stress transfer through the interphase in curved-fiber pullout tests of nanocomposites, Composites B, 165, 417-434 (2019)
[53] Roohbakhshan, F.; Sauer, R. A., Isogeometric nonlinear shell elements for thin laminated composites based on analytical thickness integration, J. Micromech. Mol. Phys., 1, 03n04, Article 1640010 pp. (2016)
[54] Sauer, R. A.; Duong, T. X.; Corbett, C. J., A computational formulation for constrained solid and liquid membranes considering isogeometric finite elements, Comput. Methods Appl. Mech. Engrg., 271, 48-68 (2014) · Zbl 1296.74126
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.