×

Multiscale model of the role of grain boundary structures in the dynamic intergranular failure of polycrystal aggregates. (English) Zbl 1439.74088

Summary: A multiscale approach to investigate the influence of the grain boundary (GB) lattice structures on the dynamic intergranular failure in 3D polycrystalline materials is proposed. The model comprises the meso- and atomistic scales using the boundary element method (BEM) and molecular dynamics (MD), respectively. At the mesoscale, stochastic grain morphologies, random crystalline orientations and initial defects are included in the physical model. Moreover, a dynamic high-rate load is imposed to produce dynamic stress and strain waves propagating throughout the polycrystal, inducing the material to be susceptible to fail. The intergranular failure is governed by the critical energy density for shear and cleavage modes, evaluated from a set of nano GBs at the atomistic scale. The novelty is the assessment of the energy density considering its dependency on the interface lattice, leading to a group of failure criteria distributed along the aggregate. The difference in the order of magnitude between these length scales is a challenge for the transition multiscale model. Hence, an asymptotic scaling methodology is adapted for bridging the mechanical strength. Finally, it is worth noting that the level of detail of this criterion, is a remarkable enhancement over other intergranular failure models.

MSC:

74E20 Granularity
74S15 Boundary element methods applied to problems in solid mechanics
74M25 Micromechanics of solids

Software:

Voro++; MUMPS; Triangle
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Rycroft, C. H., VORO++: A three-dimensional Voronoi cell library in C++, Chaos, 19, Article 041111 pp. (2009)
[2] Quey, R.; Renversade, L., Optimal polyhedral description of 3D polycrystals: Method and application to statistical and synchrotron X-ray diffraction data, Comput. Methods Appl. Mech. Engrg., 330, 308-333 (2018) · Zbl 1439.74087
[3] Gulizzi, V.; Rycroft, C. H.; Benedetti, I., Modelling intergranular and transgranular micro-cracking in polycrystalline materials, Comput. Methods Appl. Mech. Engrg., 329, 168-194 (2018) · Zbl 1439.74351
[4] Fritzen, F.; Hlke, T.; Schnack, E., Periodic three-dimensional mesh generation for crystalline aggregates based on Voronoi tessellation, Comput. Mech., 43, 701-713 (2009)
[5] Brommesson, R.; Ekh, M.; Joseph, C., 3D grain structure modelling of intergranular fracture in forged Haynes 282, Eng. Fract. Mech., 154, 57-71 (2016)
[6] Tan, C. L.; Shiah, Y. C.; Wang, C. Y., Boundary element elastic stress analysis of 3D generally anisotropic solids using fundamental solutions based on Fourier series, Int. J. Solids Struct., 50, 2701-2711 (2013)
[7] Galvis, A. F.; Rodriguez, R. Q.; Sollero, P., Analysis of three-dimensional hexagonal and cubic polycrystals using the boundary element method, Mech. Mater., 117, 58-72 (2018)
[8] Benedetti, I.; Aliabadi, M. H., A three-dimensional grain boundary formulation for microstructural modeling of polycrystalline materials, Comput. Mater. Sci., 67, 249-260 (2013)
[9] Clough, R.; Penzien, J., Dynamic of Structures (2003), Computers & Structures, Inc: Computers & Structures, Inc Berkeley
[10] Meyers, M. A., Dynamic Behavior of Materials (1994), John Wiley & Sons, Inc: John Wiley & Sons, Inc New York · Zbl 0893.73002
[11] Gross, D.; Seelig, T., Fracture Mechanics with an Introduction to Micromechanics (2006), Springer-Verlag: Springer-Verlag Berlin · Zbl 1110.74001
[12] Albuquerque, E. L.; Sollero, P.; Aliabadi, M. H., Dual boundary element method for anisotropic dynamic fracture mechanics, Internat. J. Numer. Methods Engrg., 59, 1187-1205 (2004) · Zbl 1041.74555
[13] Galvis, A. F.; Rodriguez, R. Q.; Sollero, P., Dynamic analysis of three-dimensional polycrystalline materials using the boundary element method, Comput. Struct., 200, 11-20 (2018)
[14] Luther, T.; Könke, C., Coupled cohesive zone representations from 3D quasicontinuum simulation on brittle grain boundaries, Int. J. Multiscale Comput. Eng., 9, 4, 481-501 (2011)
[15] Ren, B.; Li, S., A three-dimensional atomistic-based process zone model simulation of fragmentation in polycrystalline solids, Internat. J. Numer. Methods Engrg., 93, 989-1014 (2013) · Zbl 1352.74081
[16] Qu, R. T.; Zhang, Z. J.; Zhang, P.; Liu, Z. Q.; Zhang, Z. F., Generalized energy failure criterion, Sci. Rep., 6 (2016), 23359
[17] Horstemeyer, M. F.; Baskes, M. I.; Plimpton, S. J., Length scale and time scale effects on the plastic flow of FCC metals, Acta Mater., 49, 4363-4374 (2001)
[18] Horstemeyer, M. F.; Baskes, M. I., Atomistic finite deformation simulations: A discussion on length scale effects in relation to mechanical stresses, J. Eng. Mater. Technol., 121, 2, 114-119 (1999)
[19] Guo, Y.; Zhuang, Z.; Li, X. Y.; Chen, Z., An investigation of the combined size and rate effects on the mechanical responses of FCC metals, Int. J. Solids Struct., 44, 1180-1195 (2007) · Zbl 1144.74006
[20] Hammami, F.; Kulkarni, Y., Rate dependence of grain boundary sliding via time-scaling atomistic simulations, J. Appl. Phys., 121, 085303-85305 (2017)
[21] Gao, H.; Huang, Y.; Nix, W. D.; Hutchinson, J. W., Mechanism-based strain gradient plasticity-I. Theory, J. Mech. Phys. Solids, 47, 1239-1263 (1999) · Zbl 0982.74013
[22] Bazant, Z. P., Scaling of dislocation-based strain-gradient plasticity, J. Mech. Phys. Solids, 50, 435-448 (2002) · Zbl 1116.74328
[23] Chen, Z.; Shen, L.; Fang, H. E., Hypersurface for the combined loading rate and specimen size effects on material properties, Int. J. Multiscale Comput. Eng., 3, 4, 451-461 (2005)
[24] Chen, Z.; Gan, Y.; Shen, L. M., Combined loading rate and specimen size effects on the material properties, (Sih, G., Multiscaling in Molecular and Continuum Mechanics: Interaction of Time and Size from Macro to Nano (2007), Springer), 67-84
[25] Plimpton, S., Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys., 117, 1-19 (1995) · Zbl 0830.65120
[26] Rycroft, C. H.; Grest, G. S.; Landry, J. W.; Bazant, M. Z., Analysis of granular flow in a pebble-bed nuclear reactor, Phys. Rev., 74, 021306-21316 (2006)
[27] Rycroft, C. H., Multiscale Modeling in Granular Flow (2007), Massachusetts Institute of Technology, (Ph.D. thesis)
[28] Shewchuk, J. R., Triangle: Engineering a 2D 1070 quality mesh generator and delaunay triangulator, (Lin, M. C.; Manocha, D., Applied Computational Geometry Towards Geometric Engineering (1996), Springer: Springer Philadelphia), 203-222
[29] Daniel, I. M.; Shai, O., Engineering Mechanics of Composite Materials (2006), Oxford University Press: Oxford University Press New York
[30] Synge, J. L., The Hypercircle in Mathematical Physics (1957), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0079.13802
[31] Barnett, D. M., The precise evaluation of derivatives of the anisotropic elastic Green’s functions, Phys. State Solid, 49, 741-748 (1972)
[32] Ting, T. C.T.; Lee, V. G., The three-dimensional elastostatic Green’s function for general anisotropic linear elastic solids, Quart. J. Mech. Appl. Math., 50, 407-426 (1997) · Zbl 0892.73006
[33] Galvis, A. F., Multiscale Modeling of Dynamic Failure in 3D Polycrystalline Materials using BEM and MD (2019), School of Mechanical Engineering, University of Campinas, (Ph.D. thesis)
[34] Rodríguez, R. Q.; Galvis, A. F.; Sollero, P.; Tan, C. L.; Albuquerque, E. L., Fast BEM multi-domain approach for the elastostatic analysis of short fibre composites, Eur. J. Comput. Mech., 26, 5-6, 525-540 (2017)
[35] Kögl, M.; Gaul, L., A 3-D boundary element method for dynamic analysis of anisotropic elastic solids, CMES Comput. Model. Eng. Sci., 1, 4, 27-43 (2000) · Zbl 1010.74075
[36] Rodríguez, R.; Galvis, A. F.; Sollero, P.; Tan, C. L.; Albuquerque, E. L., Transient dynamic analysis of generally anisotropic materials using the boundary element method, Acta Mech., 229, 1893-1910 (2018) · Zbl 1390.74189
[37] Houbolt, J. C., A reccurrence matrix solution for the dynamic response of elastic aircraft, J. Aeronaut. Sci., 17 (9), 540-550 (1950)
[38] Dominguez, J., Boundary Elements in Dynamics (1993), Computational Mechanics Publications: Computational Mechanics Publications Southampton · Zbl 0790.73003
[39] Albuquerque, E. L.; Sollero, P.; Aliabadi, M. H., The boundary element method applied to time dependent problems in anisotropic materials, Int. J. Solids Struct., 39, 1405-1422 (2002) · Zbl 1039.74053
[40] Kane, J. H., Boundary Element Analysis in Engineering Continuum Mechanics (1994), Prentice-Hall: Prentice-Hall New Yersey
[41] Cabané-Brouty, F.; Bernardini, J., Segregation and diffusion, J. de Physique Colloques, 43, C6, 163-176 (1982)
[42] Ballo, P., Grain boundary sliding and migration: Effect of temperature and vacancies, Phys. Rev. B, 64, 024104-24107 (2001)
[43] Steele, D.; Evans, D.; Nolan, P.; Lloyd, D. J., Quantification of grain boundary precipitation and the influence of quench rate in 6XXX aluminum alloys, Mater. Charact., 58, 40-45 (2007)
[44] Li, B. Q.; Reynolds, A. P., Correlation of grain-boundary precipitates parameters with fracture toughness in an Al-Cu-Mg-Ag alloy subjected to long-term thermal exposure, J. Mater. Sci., 33, 5849-5853 (1998)
[45] Briant, C. L., Grain boundary structure, chemistry, and failure, Mater. Sci. Technol., 17, 11, 1317-1323 (2001)
[46] Lejcek, P., Grain boundaries: description, structure and thermodynamics, (Hull, R.; Jagadish, C.; R. M. Osgood, J.; Parisi, J.; Wang, Z.; Warlimont, H., Grain Boundary Segregation in Metals (2010), Springer Heidelberg: Springer Heidelberg London), 5-24
[47] Rouvierea, J. L.; Rousseau, K.; Fournel, F.; Moriceau, H., Huge differences between low- and high-angle twist grain boundaries: the case of ultrathin (001) Si films bonded to (001) Si wafers, Appl. Phys. Lett., 77, 8, 1135-1137 (2000)
[48] Gao, Y.; Jin, Z., Interaction between lattice dislocations and low-angle grain boundaries in Ni via molecular dynamics simulations, Mol. Simul., 43, 1172-1178 (2017)
[49] Shi, A. C.; Rottman, C.; He, Y., Calculation of energy of low-angle grain boundaries, Phil. Mag. A, 55, 4, 499-511 (1989)
[50] Fletcher, N. H., Crystal interface models — a critical survey, (Advances in Materials Research (1971), Wiley: Wiley New York), 281-314
[51] Ogawa, H., GBstudio: A builder software on periodic models of CSL boundaries for molecular simulation, Mater. Trans., 47, 11, 2706-2710 (2006)
[52] Rittner, J. D.; Seidman, D. N., \( \langle 110 \rangle\) Symmetric tilt grain-boundary structures in FCC metals with low stacking-fault energies, Phys. Rev. B, 54, 10, 6999-7015 (1996)
[53] Sangid, M. D.; Sehitoglua, H.; Maier, H. J.; Niendorf, T., Grain boundary characterization and energetics of superalloys, Mater. Sci. Eng. A, 527, 7115-7125 (2010)
[54] Wolf, D., Structure and energy of general grain boundaries in BCC metals, J. Appl. Phys., 69, 1, 185-196 (1991)
[55] Watanabe, T.; Arai, K. I.; Yoshimi, K., Texture and grain boundary character distribution (GBCD) in rapidly solidified and annealed Fe-6.5mass
[56] Zhang, Z. W.; Wang, W. H.; Zou, Y.; Baker, I.; Cheng, D.; Liang, Y. F., Control of grain boundary character distribution and its effects on the deformation of Fe-6.5 wt.
[57] Zhang, Y.; Gokhman, A.; Wang, W.; Zhang, Z., Effects of annealing on grain-boundary character distribution and texture evolution in hot-rolled Fe-6.5 wt
[58] Mendelev, M. I.; Han, S.; Srolovitz, D. J., Development of new interatomic potentials appropriate for crystalline and liquid iron, Phil. Mag., 83, 35, 3977-3994 (2003)
[59] Tuckerman, M. E.; Alejandre, J.; López-Rendón, R.; Jochim, A. L.; Martyna, G. J., A Liouville-operator derived measure-preserving integrator for molecular dynamics simulations in the isothermal-isobaric ensemble, J. Phys. A: Math. Gen., 39, 5629-5651 (2006) · Zbl 1098.81096
[60] Tschopp, M. A.; McDowell, D. L., Asymmetric tilt grain boundary structure and energy in copper and aluminium, Phil. Mag., 87, 25, 3871-3892 (2007)
[61] Tschopp, M. A.; McDowell, D. L., Structures and energies of \(\Sigma 3\) asymmetric tilt grain boundaries in copper and aluminium, Phil. Mag., 87, 22, 3147-3173 (2007)
[62] Tschopp, M. A.; Solanki, K. N.; Gao, F.; Sun, X.; Khaleel, M. A.; Horstemeyer, M. F., Probing grain boundary sink strength at the nanoscale: Energetics and length scales of vacancy and interstitial absorption by grain boundaries in \(\alpha -Fe\), Phys. Rev. B, 85, 064108-64121 (2012)
[63] Runnels, B.; Beyerlein, I. J.; Ortiz, S. C.M., A relaxation method for the energy and morphology of grain boundaries and interfaces, J. Mech. Phys. Solids, 94, 338-408 (2016) · Zbl 1482.74022
[64] Dingreville, R.; Aksoy, D.; Spearot, D. E., A primer on selecting grain boundary sets for comparison of interfacial fracture properties in molecular dynamics simulations, Sci. Rep., 7 (2017), 8332
[65] Yamakov, V.; Saether, E.; Glaessgen, E. H., Molecular modeling of intergranular fracture in aluminum: constitutive relation for interface debonding, J. Mater. Sci., 43, 7488-7494 (2008)
[66] Barrows, W.; Dingreville, R.; Spearot, D., Traction-separation relationships for hydrogen-induced grain boundary embrittlement in nickel via molecular dynamics simulations, Mater. Sci. Eng. A, 650, 354-364 (2016)
[67] Schneider, T.; Stoll, E., Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions, Phys. Rev. B, 17, 3, 1302-1322 (1978)
[68] Parrinello, M.; Rahman, A., Polymorphic transitions in single crystals: A new molecular dynamics method, J. Appl. Phys., 52, 12, 7182-7190 (1981)
[69] Martyna, G. J.; Tobias, D. J.; Klein, M. L., Constant pressure molecular dynamics algorithms, J. Chem. Phys., 101, 1, 4177-4189 (1994)
[70] Shinoda, W.; Shiga, M.; Mikami, M., Rapid estimation of elastic constants by molecular dynamics simulation under constant stress, Phys. Rev. B, 69, 134103-134108 (2004)
[71] Wu, X.; Prakash, V., Dynamic compressive behavior of ice at cryogenic temperatures, Cold Reg. Sci. & Technol., 118, 1-13 (2015)
[72] Santos-Flórez, P.; Ruestes, C. J.; de Koning, M., Uniaxial-deformation behavior of ice \(I{}_{\mathit{h}}\) as described by the TIP4P/Ice and mW water models, J. Chem. Phys., 149, 164711-164718 (2018)
[73] Paliwal, B.; Cherkaoui, M., An improved atomistic simulation based mixed-mode cohesive zone law considering non-planar crack growth, Int. J. Solids Struct., 50, 3346-3360 (2013)
[74] Bazant, Z. P., Scaling laws in mechanics of failure, J. Eng. Mech., 119, 9, 1828-1844 (1993)
[75] Sakui, S.; Sakai, T., The effect of strain rate, temperature and grain size on the lower yield stress and flow stress of polycrystalline pure iron, J-STAGE, 58, 10, 1438-1455 (1972)
[76] Li, Q. M., Strain energy density failure criterion, Int. J. Solids Struct., 38, 6997-7013 (2001) · Zbl 1009.74004
[77] Huntington, H. B., The Elastic Constants of Crystals (1958), Academic Press Inc: Academic Press Inc New York
[78] Jang, D.; Atzmon, M., Grain-size dependence of plastic deformation in nanocrystalline Fe, J. Appl. Phys., 93, 11, 9282-9286 (2003)
[79] Youssef, K. M.; Scattergood, R. O.; Murty, K. L.; Horton, J. A.; Koch, C. C., Ultrahigh strength and high ductility of bulk nanocrystalline copper, Appl. Phys. Lett., 87 (2005), 091904
[80] Tong, X.; Zhang, H.; Li, D. Y., Effect of annealing treatment on mechanical properties of nanocrystalline \(\alpha \)-iron: an atomistic study, Sci. Rep., 5 (2015), 8459
[81] Amestoy, P. R.; Duff, I. S.; Koster, J.; L’Excellent, J.-Y., A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM J. Matrix Anal. Appl., 23, 1, 15-41 (2001) · Zbl 0992.65018
[82] Amestoy, P. R.; Guermouche, A.; L’Excellent, J.-Y.; Pralet, S., Hybrid scheduling for the parallel solution of linear systems, Parallel Comput., 32, 2, 136-156 (2006)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.