×

Localization and separation of solutions for Fredholm integral equations. (English) Zbl 07184973

Summary: In this paper, we establish a qualitative study of nonlinear Fredholm integral equations, where we will carry out a study on the localization and separation of solutions. Moreover, we consider an efficient algorithm to approximate a solution. To do this, we study the semilocal convergence of an efficient third order iterative scheme for solving nonlinear Fredholm integral equations under mild conditions. The novelty of our work lies in the fact that this study involves first order Fréchet derivative and mild conditions. A numerical example involving nonlinear Fredholm integral equations, is solved to show the domains of existence and uniqueness of solutions. The applicability of the iterative scheme considered is also shown.

MSC:

65-XX Numerical analysis
47-XX Operator theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Argyros, I. K.; Hilout, S., Numerical Methods in Nonlinear Analysis (2013), World Scientific Publ. Comp.: World Scientific Publ. Comp. New Jersey · Zbl 1262.65061
[2] Argyros, I. K.; Hilout, S.; Tabatabai, M. A., Mathematical Modelling with Applications in Biosciences and Engineering (2011), Nova Publishers: Nova Publishers New York
[3] Awawdeh, F.; Adawi, A.; Al-Shara, S., A numerical method for solving nonlinear integral equations, Int. Math. Forum, 4, 805-817 (2009) · Zbl 1203.65282
[4] Ezquerro, J. A.; Hernández-Verón, M. A., Some numerical methods for solving nonlinear integral equations of Hammerstein type, (Communications Book of the Congress CEDYA+CMA 2017. Communications Book of the Congress CEDYA+CMA 2017, Cartagena, Spain (2017)) · Zbl 1478.65046
[5] Ezquerro, J. A.; Hernández-Verón, M. A., Newton’s Method: An Updated Approach of Kantorovich’s Theory (2017), Birkhäuser: Birkhäuser Cham · Zbl 1376.65088
[6] Hernández-Verón, M. A.; Martínez, Eulalia; Teruel, Carles, Semilocal convergence of a k-step iterative process and its application for solving a special kind of conservative problems, Numer. Algorithms, 76, 309-331 (2017) · Zbl 06808517
[7] Matrowski, J., Functional equations and Nemystkii operators, Funkc. Ekvacioj, 25, 127-132 (1982) · Zbl 0504.39008
[8] Nadir, M.; Khirani, A., Adapted Newton-Kantorovich method for nonlinear integral equations, J. Math. Stat., 12, 3, 176-181 (2016)
[9] Parhi, S. K.; Gupta, D. K., Semilocal convergence of a Stirling-like method in Banach spaces, Int. J. Comput. Methods, 7, 215-228 (2010) · Zbl 1267.65057
[10] Parhi, S. K.; Gupta, D. K., Convergence of a third order method for fixed points in Banach spaces, Numer. Algorithms, 60, 419-434 (2012) · Zbl 1248.65057
[11] Polyanin, A. D.; Manzhirov, A. V., Handbook of Integral Equations (1998), CRC Press: CRC Press Boca Raton · Zbl 0896.45001
[12] Rall, L. B., Computational Solutions of Nonlinear Operator Equations (1969), Robert E. Krieger: Robert E. Krieger New York · Zbl 0175.15804
[13] Rashidinia, J.; Parsa, A., Analytical-numerical solution for nonlinear integral equations of Hammerstein type, Int. J. Math. Model. Comput., 2, 1, 61-69 (2012)
[14] Saberi-Nadja, J.; Heidari, M., Solving nonlinear integral equations in the Urysohn form by Newton-Kantorovich-quadrature method, Comput. Math. Appl., 60, 2018-2065 (2010) · Zbl 1205.65340
[15] Singh, S.; Gupta, D. K.; Martínez, E.; Hueso, J. L., Enlarging the convergence domain in local convergence studies for iterative methods in Banach spaces, Mediterr. J. Math., 13, 4219-4235 (2016) · Zbl 1354.65109
[16] Traub, J. F., Iterative Methods for the Solution of Equations (1964), Prentice-Hall: Prentice-Hall Englewood Cliffs, New Jersey · Zbl 0121.11204
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.