×

Undistorted purely pseudo-Anosov groups. (English) Zbl 1480.20096

Summary: In this paper we prove that groups as in the title are convex cocompact in the mapping class group.

MSC:

20F65 Geometric group theory
20F38 Other groups related to topology or analysis
57K20 2-dimensional topology (including mapping class groups of surfaces, Teichmüller theory, curve complexes, etc.)
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] J. Behrstock, B. Kleiner, Y. Minsky and L. Mosher, Geometry and rigidity of mapping class groups, Geom. Topol. 16 (2012), no. 2, 781-888. · Zbl 1281.20045
[2] J. A. Behrstock, Asymptotic geometry of the mapping class group and Teichmüller space, Geom. Topol. 10 (2006), 1523-1578. · Zbl 1145.57016
[3] M. Bestvina, Questions in geometric group theory, preprint (2004), http://www.math.utah.edu/ bestvina/.
[4] M. Bestvina, K. Bromberg and K. Fujiwara, Constructing group actions on quasi-trees and applications to mapping class groups, Publ. Math. Inst. Hautes Études Sci. 122 (2015), 1-64. · Zbl 1372.20029
[5] M. T. Clay, C. J. Leininger and J. Mangahas, The geometry of right-angled Artin subgroups of mapping class groups, Groups Geom. Dyn. 6 (2012), no. 2, 249-278. · Zbl 1245.57004
[6] S. Dowdall, A. E. Kent and C. J. Leininger, Pseudo-Anosov subgroups of fibered 3-manifold groups, Groups Geom. Dyn. 8 (2014), no. 4, 1247-1282. · Zbl 1321.57001
[7] M. G. Durham and S. J. Taylor, Convex cocompactness and stability in mapping class groups, Algebr. Geom. Topol. 15 (2015), no. 5, 2839-2859. · Zbl 1364.20027
[8] B. Farb and D. Margalit, A primer on mapping class groups, Princeton Math. Ser. 49, Princeton University Press, Princeton 2012.
[9] B. Farb and L. Mosher, Convex cocompact subgroups of mapping class groups, Geom. Topol. 6 (2002), 91-152. · Zbl 1021.20034
[10] U. Hamenstädt, Word hyperbolic extensions of surface groups, preprint (2005), https://arxiv.org/abs/math/0505244.
[11] A. E. Kent and C. J. Leininger, Subgroups of mapping class groups from the geometrical viewpoint, In the tradition of Ahlfors-Bers. IV, Contemp. Math. 432, American Mathematical Society, Providence (2007), 119-141. · Zbl 1140.30017
[12] A. E. Kent and C. J. Leininger, Shadows of mapping class groups: Capturing convex cocompactness, Geom. Funct. Anal. 18 (2008), no. 4, 1270-1325. · Zbl 1282.20046
[13] A. E. Kent, C. J. Leininger and S. Schleimer, Trees and mapping class groups, J. reine angew. Math. 637 (2009), 1-21. · Zbl 1190.57014
[14] T. Koberda, J. Mangahas and S. J. Taylor, The geometry of purely loxodromic subgroups of right-angled Artin groups, Trans. Amer. Math. Soc. 369 (2017), no. 11, 8179-8208. · Zbl 1476.20042
[15] J. Mangahas, Uniform uniform exponential growth of subgroups of the mapping class group, Geom. Funct. Anal. 19 (2010), no. 5, 1468-1480. · Zbl 1207.57005
[16] J. Mangahas and S. J. Taylor, Convex cocompactness in mapping class groups via quasiconvexity in right-angled Artin groups, Proc. Lond. Math. Soc. (3) 112 (2016), no. 5, 855-881. · Zbl 1345.30060
[17] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. I. Hyperbolicity, Invent. Math. 138 (1999), no. 1, 103-149. · Zbl 0941.32012
[18] H. A. Masur and Y. N. Minsky, Geometry of the complex of curves. II. Hierarchical structure, Geom. Funct. Anal. 10 (2000), no. 4, 902-974. · Zbl 0972.32011
[19] M. Mj and P. Sardar, A combination theorem for metric bundles, Geom. Funct. Anal. 22 (2012), no. 6, 1636-1707. · Zbl 1284.57016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.