×

zbMATH — the first resource for mathematics

No scalar hair in nonminimal derivative coupling model for Neumann and Dirichlet reflecting star. (English) Zbl 1430.83024
Summary: We investigate the existence of scalar hair in the background of a reflecting star. The kinetic part of the scalar field is nonminimally coupled to the Einstein tensor. For both the Dirichlet and the Neumann boundary conditions, we study the no-hair theorem. For the massless case, we show that there is no scalar hair, and in the massive case conditions leading to the no-hair theorem are specified.
MSC:
83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Ruffini, R.; Wheeler, J. A., Phys. Today, 24, 30 (1971)
[2] Misner, C. W.; Thorne, K. S.; Wheeler, J. A., Gravitation (1973), W.H. Freeman: W.H. Freeman San Francisco, CA, USA
[3] Herdeiro, C. A.R.; Radu, E.
[4] Hod, Phys. Rev. D, 94, Article 104073 pp. (2016)
[5] Hod, S., Phys. Rev. D, 96, Article 024019 pp. (2017)
[6] Hod, S., Eur. Phys. J. C, 77, 899 (2017)
[7] Hod, S., Eur. Phys. J. C, 78, 173 (2017)
[8] Bhattacharjee, S.; Sarkar, S., Phys. Rev. D, 95, Article 084027 pp. (2017)
[9] Peng, Y., Phys. Lett. B, 792, 156 (2019)
[10] Peng, Y., Phys. Lett. B, 782, 717 (2018)
[11] Peng, Y.
[12] Peng, Y.
[13] Peng, Y., Nucl. Phys. B, 938, 143 (2019)
[14] Mohseni Sadjadi, H.; Khodaei, M.
[15] Khodaei, M.; Mohseni Sadjadi, H., Phys. Lett. B, 797, Article 134922 pp. (2019)
[16] Bekenstein, J. D., Ann. Phys., 91, 75 (1975)
[17] Bekenstein, J. D., Ann. Phys., 82, 535 (1974)
[18] Germani, C.; Kehagias, A., Phys. Rev. Lett., 105, Article 011302 pp. (2010)
[19] Sadjadi, H. M.; Goodarzi, P., J. Cosmol. Astropart. Phys., 07, Article 039 pp. (2013)
[20] Sadjadi, H. M.; Goodarzi, P., Phys. Lett. B, 732, 278 (2014)
[21] Goodarzi, P.; Sadjadi, H. M., Eur. Phys. J. C, 77, 463 (2017)
[22] Li, X.; Fan, J.; Liu, X.; Deng, G. M.; Huang, Y. C., Int. J. Mod. Phys. A, 34, Article 1950079 pp. (2019)
[23] Sadjadi, H. M.; Goodarzi, P., J. Cosmol. Astropart. Phys., 02, Article 038 pp. (2013)
[24] Yang, N.; Fei, Q.; Gao, Q.; Gong, Y., Class. Quantum Gravity, 33, Article 205001 pp. (2016)
[25] Sushkov, S. V., Phys. Rev. D, 80, Article 103505 pp. (2009)
[26] Granda, L. N., J. Cosmol. Astropart. Phys., 1007, Article 006 pp. (2010)
[27] Sadjadi, H. M., Phys. Rev. D, 83, Article 107301 pp. (2011)
[28] Sadjadi, H. M., Gen. Relativ. Gravit., 46, 1817 (2014)
[29] Li, D.; Pi, Sh.; Scherrer, R. J., Phys. Rev. D, 97, Article 023530 pp. (2018)
[30] Harko, T.; Lobo, F. S.N.; Saridakis, E. N.; Tsoukalas, M., Phys. Rev. D, 95, Article 044019 pp. (2017)
[31] Jawad, A.; Amin, M. B.; Rani, Sh., Int. J. Mod. Phys. D, 28, Article 1950137 pp. (2019)
[32] Quiros, I., Int. J. Mod. Phys. D, 28, Article 1930012 pp. (2019)
[33] Saichaemchan, S.; Gumjudpai, B., J. Phys. Conf. Ser., 901, Article 012010 pp. (2017)
[34] Matsumoto, J.; Sushkov, S. V., J. Cosmol. Astropart. Phys., 1801, Article 040 pp. (2018)
[35] Gumjudpai, B.; Jawralee, Y.; Kaewkhao, N., Gen. Relativ. Gravit., 49, 120 (2017)
[36] Granda, L. N., Class. Quantum Gravity, 28, Article 025006 pp. (2011)
[37] Sushkov, S. V.; Korolev, R., Class. Quantum Gravity, 29, Article 085008 pp. (2012)
[38] Sushkov, S. V., Fund. Theor. Phys., 189, 89 (2017)
[39] Minamitsuji, M., Phys. Rev. D, 89, Article 064017 pp. (2014)
[40] Stetsko, M. M., Phys. Rev. D, 99, Article 044028 pp. (2019)
[41] Abdalla, E.; Melgar, B. C.; Fontana, R. D.B.; Oliveira, J.d.; Papantonopoulos, E.; Pavan, A. B., Phys. Rev. D, 99, Article 104065 pp. (2019)
[42] Anabalon, A.; Cisterna, A.; Oliva, J., Phys. Rev. D, 89, Article 084050 pp. (2014)
[43] Cisterna, A.; Erices, C., Phys. Rev. D, 89, Article 084038 pp. (2014)
[44] Cisterna, A.; Cruz, M.; Delsate, T.; Saavedra, J., Phys. Rev. D, 92, Article 104018 pp. (2015)
[45] Kolyvaris, T.; Koutsoumbas, G.; Papantonopoulos, E.; Siopsis, G.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.