Russo, Remigio; Tartaglione, Alfonsina The plane exterior boundary-value problem for nonhomogeneous fluids. (English) Zbl 1433.76043 J. Math. Fluid Mech. 22, No. 1, Paper No. 14, 11 p. (2020). MSC: 76D07 76D03 35Q30 35R05 PDF BibTeX XML Cite \textit{R. Russo} and \textit{A. Tartaglione}, J. Math. Fluid Mech. 22, No. 1, Paper No. 14, 11 p. (2020; Zbl 1433.76043) Full Text: DOI
Ji, Xiang; Wang, Yanqing; Wei, Wei New regularity criteria based on pressure or gradient of velocity in Lorentz spaces for the 3D Navier-Stokes equations. (English) Zbl 1433.76033 J. Math. Fluid Mech. 22, No. 1, Paper No. 13, 8 p. (2020). MSC: 76D03 76D05 35B33 35Q35 PDF BibTeX XML Cite \textit{X. Ji} et al., J. Math. Fluid Mech. 22, No. 1, Paper No. 13, 8 p. (2020; Zbl 1433.76033) Full Text: DOI
Bian, Dongfen; Pu, Xueke Global smooth axisymmetic solutions of the Boussinesq equations for magnetohydrodynamics convection. (English) Zbl 1433.35258 J. Math. Fluid Mech. 22, No. 1, Paper No. 12, 13 p. (2020). MSC: 35Q35 76D03 76W05 35B65 35B07 PDF BibTeX XML Cite \textit{D. Bian} and \textit{X. Pu}, J. Math. Fluid Mech. 22, No. 1, Paper No. 12, 13 p. (2020; Zbl 1433.35258) Full Text: DOI
Lanzendörfer, M.; Hron, J. On multiple solutions to the steady flow of incompressible fluids subject to do-nothing or constant traction boundary conditions on artificial boundaries. (English) Zbl 1429.76040 J. Math. Fluid Mech. 22, No. 1, Paper No. 11, 18 p. (2020). MSC: 76D03 65N30 76M10 35Q30 PDF BibTeX XML Cite \textit{M. Lanzendörfer} and \textit{J. Hron}, J. Math. Fluid Mech. 22, No. 1, Paper No. 11, 18 p. (2020; Zbl 1429.76040) Full Text: DOI
Liu, Ji Boundedness in a chemotaxis-(Navier-)Stokes system modeling coral fertilization with slow \(p\)-Laplacian diffusion. (English) Zbl 1433.35425 J. Math. Fluid Mech. 22, No. 1, Paper No. 10, 31 p. (2020). MSC: 35Q92 35K55 35Q35 92C17 35D30 76Z99 PDF BibTeX XML Cite \textit{J. Liu}, J. Math. Fluid Mech. 22, No. 1, Paper No. 10, 31 p. (2020; Zbl 1433.35425) Full Text: DOI
Jiang, Kerui; Liu, Zuhan; Zhou, Ling Global existence and asymptotic stability of 3D generalized magnetohydrodynamic equations. (English) Zbl 1433.35280 J. Math. Fluid Mech. 22, No. 1, Paper No. 9, 14 p. (2020). MSC: 35Q35 35A01 35B40 76W05 35B35 35B45 35A02 PDF BibTeX XML Cite \textit{K. Jiang} et al., J. Math. Fluid Mech. 22, No. 1, Paper No. 9, 14 p. (2020; Zbl 1433.35280) Full Text: DOI
Wang, Chao; Wang, Yuxi Zero-viscosity limit of the Navier-Stokes equations in a simply-connected bounded domain under the analytic setting. (English) Zbl 1429.35172 J. Math. Fluid Mech. 22, No. 1, Paper No. 8, 58 p. (2020). MSC: 35Q30 76D05 PDF BibTeX XML Cite \textit{C. Wang} and \textit{Y. Wang}, J. Math. Fluid Mech. 22, No. 1, Paper No. 8, 58 p. (2020; Zbl 1429.35172) Full Text: DOI
Silvestre, Ana L. On the Oseen fundamental solution and the asymptotic profile of flows past a translating object. (English) Zbl 1429.35177 J. Math. Fluid Mech. 22, No. 1, Paper No. 7, 19 p. (2020). MSC: 35Q35 35Q30 76D07 76D05 76D03 PDF BibTeX XML Cite \textit{A. L. Silvestre}, J. Math. Fluid Mech. 22, No. 1, Paper No. 7, 19 p. (2020; Zbl 1429.35177) Full Text: DOI
Chen, Qing Energy conservation in 2-D density-dependent Euler equations with regularity assumptions on the vorticity. (English) Zbl 1429.76036 J. Math. Fluid Mech. 22, No. 1, Paper No. 6, 13 p. (2020). MSC: 76B03 35Q31 PDF BibTeX XML Cite \textit{Q. Chen}, J. Math. Fluid Mech. 22, No. 1, Paper No. 6, 13 p. (2020; Zbl 1429.76036) Full Text: DOI
Giorgini, Andrea Well-posedness of a diffuse interface model for Hele-Shaw flows. (English) Zbl 1435.35297 J. Math. Fluid Mech. 22, No. 1, Paper No. 5, 36 p. (2020). Reviewer: Thomas Ernst (Uppsala) MSC: 35Q35 35D35 35K61 76D27 76S05 76D05 35B65 35D30 35A01 35A02 76D45 PDF BibTeX XML Cite \textit{A. Giorgini}, J. Math. Fluid Mech. 22, No. 1, Paper No. 5, 36 p. (2020; Zbl 1435.35297) Full Text: DOI
Choi, Young-Pil; Ha, Seung-Yeal; Jung, Jinwook; Kim, Jeongho On the coupling of kinetic thermomechanical Cucker-Smale equation and compressible viscous fluid system. (English) Zbl 1429.35173 J. Math. Fluid Mech. 22, No. 1, Paper No. 4, 34 p. (2020). MSC: 35Q35 35Q30 76N10 PDF BibTeX XML Cite \textit{Y.-P. Choi} et al., J. Math. Fluid Mech. 22, No. 1, Paper No. 4, 34 p. (2020; Zbl 1429.35173) Full Text: DOI
Bradshaw, Zachary; Kukavica, Igor Existence of suitable weak solutions to the Navier-Stokes equations for intermittent data. (English) Zbl 1436.35273 J. Math. Fluid Mech. 22, No. 1, Paper No. 3, 20 p. (2020). Reviewer: Piotr Biler (Wrocław) MSC: 35Q30 76D05 35D30 PDF BibTeX XML Cite \textit{Z. Bradshaw} and \textit{I. Kukavica}, J. Math. Fluid Mech. 22, No. 1, Paper No. 3, 20 p. (2020; Zbl 1436.35273) Full Text: DOI
Dong, Bo-Qing; Ye, Zhuan; Zhai, Xiaoping Global regularity for the 2D Boussinesq equations with temperature-dependent viscosity. (English) Zbl 1433.35265 J. Math. Fluid Mech. 22, No. 1, Paper No. 2, 16 p. (2020). MSC: 35Q35 35B65 76D03 35R11 42B25 PDF BibTeX XML Cite \textit{B.-Q. Dong} et al., J. Math. Fluid Mech. 22, No. 1, Paper No. 2, 16 p. (2020; Zbl 1433.35265) Full Text: DOI
Black, Tobias The Stokes limit in a three-dimensional chemotaxis-Navier-Stokes system. (English) Zbl 1433.35259 J. Math. Fluid Mech. 22, No. 1, Paper No. 1, 35 p. (2020). MSC: 35Q35 35B40 35D30 35K55 35Q92 92C17 35B65 PDF BibTeX XML Cite \textit{T. Black}, J. Math. Fluid Mech. 22, No. 1, Paper No. 1, 35 p. (2020; Zbl 1433.35259) Full Text: DOI