Du, Zhijie; Duan, Huoyuan; Liu, Wei Staggered Taylor-Hood and Fortin elements for Stokes equations of pressure boundary conditions in Lipschitz domain. (English) Zbl 1450.65145 Numer. Methods Partial Differ. Equations 36, No. 1, 185-208 (2020). MSC: 65N30 65N12 65N15 76M10 35Q35 PDF BibTeX XML Cite \textit{Z. Du} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 185--208 (2020; Zbl 1450.65145) Full Text: DOI
He, Wenming Ultraconvergence of the derivative of high-order finite element method for elliptic problems with constant coefficients. (English) Zbl 07258860 Numer. Methods Partial Differ. Equations 36, No. 1, 173-184 (2020). Reviewer: Christoph Erath (Feldkirch) MSC: 65N30 65N12 65D05 35J15 PDF BibTeX XML Cite \textit{W. He}, Numer. Methods Partial Differ. Equations 36, No. 1, 173--184 (2020; Zbl 07258860) Full Text: DOI
Liang, Yuxiang; Yao, Zhongsheng; Wang, Zhibo Fast high order difference schemes for the time fractional telegraph equation. (English) Zbl 07258859 Numer. Methods Partial Differ. Equations 36, No. 1, 154-172 (2020). MSC: 65M06 65M12 35R11 26A33 35Q60 PDF BibTeX XML Cite \textit{Y. Liang} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 154--172 (2020; Zbl 07258859) Full Text: DOI
Oulhaj, Ahmed Ait Hammou; Maltese, David Convergence of a positive nonlinear control volume finite element scheme for an anisotropic seawater intrusion model with sharp interfaces. (English) Zbl 07258858 Numer. Methods Partial Differ. Equations 36, No. 1, 133-153 (2020). MSC: 65M60 65M06 65M08 65M12 35K65 76S05 35R35 76M10 86A05 PDF BibTeX XML Cite \textit{A. A. H. Oulhaj} and \textit{D. Maltese}, Numer. Methods Partial Differ. Equations 36, No. 1, 133--153 (2020; Zbl 07258858) Full Text: DOI
Hendy, Ahmed S.; Pimenov, Vladimir G.; Macías-Díaz, Jorge E. Convergence and stability estimates in difference setting for time-fractional parabolic equations with functional delay. (English) Zbl 07258857 Numer. Methods Partial Differ. Equations 36, No. 1, 118-132 (2020). MSC: 65M06 65M15 65M12 35K10 26A33 35R11 35R07 PDF BibTeX XML Cite \textit{A. S. Hendy} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 118--132 (2020; Zbl 07258857) Full Text: DOI
Djoko, Jules K.; Konlack, Virginie S.; Mbehou, Mohamed Stokes equations under nonlinear slip boundary conditions coupled with the heat equation: a priori error analysis. (English) Zbl 07258856 Numer. Methods Partial Differ. Equations 36, No. 1, 86-117 (2020). Reviewer: Murli Gupta (Washington, D. C.) MSC: 65N30 65N12 65N15 76D07 76M10 35K05 80A19 PDF BibTeX XML Cite \textit{J. K. Djoko} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 86--117 (2020; Zbl 07258856) Full Text: DOI
Li, Xiaoli; Rui, Hongxing A fully conservative block-centered finite difference method for Darcy-Forchheimer incompressible miscible displacement problem. (English) Zbl 07258855 Numer. Methods Partial Differ. Equations 36, No. 1, 66-85 (2020). MSC: 76M20 76S05 65M06 65M15 65M12 PDF BibTeX XML Cite \textit{X. Li} and \textit{H. Rui}, Numer. Methods Partial Differ. Equations 36, No. 1, 66--85 (2020; Zbl 07258855) Full Text: DOI
Luo, Zhendong; Jin, Shiju A reduced-order extrapolated Crank-Nicolson collocation spectral method based on proper orthogonal decomposition for the two-dimensional viscoelastic wave equations. (English) Zbl 07258854 Numer. Methods Partial Differ. Equations 36, No. 1, 49-65 (2020). MSC: 65M70 65M12 65D05 65D30 65M99 74S25 35Q74 74D10 76M22 76A10 PDF BibTeX XML Cite \textit{Z. Luo} and \textit{S. Jin}, Numer. Methods Partial Differ. Equations 36, No. 1, 49--65 (2020; Zbl 07258854) Full Text: DOI
Feng, Xinlong; He, Ruijian; Chen, Zhangxin \(H^1\)-superconvergence of finite difference method based on \(Q_1\)-element on quasi-uniform mesh for the 3D Poisson equation. (English) Zbl 1450.65137 Numer. Methods Partial Differ. Equations 36, No. 1, 29-48 (2020). Reviewer: Bülent Karasözen (Ankara) MSC: 65N06 65N30 65N12 35J05 35J25 PDF BibTeX XML Cite \textit{X. Feng} et al., Numer. Methods Partial Differ. Equations 36, No. 1, 29--48 (2020; Zbl 1450.65137) Full Text: DOI
Shen, Jin-Ye; Sun, Zhi-Zhong Two-level linearized and local uncoupled difference schemes for the two-component evolutionary Korteweg-de Vries system. (English) Zbl 1450.65086 Numer. Methods Partial Differ. Equations 36, No. 1, 5-28 (2020). Reviewer: Kanakadurga Sivakumar (Chennai) MSC: 65M06 65N06 65M12 65M15 35Q53 PDF BibTeX XML Cite \textit{J.-Y. Shen} and \textit{Z.-Z. Sun}, Numer. Methods Partial Differ. Equations 36, No. 1, 5--28 (2020; Zbl 1450.65086) Full Text: DOI