×

Imperfect interface effect for nano-composites accounting for fiber section shape under antiplane shear. (English) Zbl 1446.74056

Summary: This paper investigates the elastic responses of fibrous nano-composites with imperfectly bonded interface under longitudinal shear. The proposed imperfect interface model is the shear lag (or the spring layer) model; the presented nano interfacial stress model is the Gurtin-Murdoch surface/interface model; and the three-phase confocal elliptical cylinder model is the geometry model accounting for the fiber section shape. By virtue of the complex variable method, a generalized self-consistent method is employed to derive the closed from solution of the effective antiplane shear modulus of the fibrous nano-composites with imperfect interface. Five existing solutions can be regarded as the limit form the present analytic expression. The influences of the interface elastic constant, the interfacial imperfection parameter, the size of the elliptic section fiber, the fiber section aspect ratio, the fiber volume fraction and the fiber elastic property on the effective antiplane shear modulus of the nano-composites are discussed. Particularly, numerical results demonstrate that the interfacial elastic imperfection will always cause a significant reduction in the effective antiplane shear modulus; and the fiber interface stress effect on the effective modulus of the fibrous nano-composites will weaken with the interfacial imperfection increases.

MSC:

74-10 Mathematical modeling or simulation for problems pertaining to mechanics of deformable solids
74E30 Composite and mixture properties
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Thostenson, E. T.; Chou, T. W., Aligned multi-walled carbon nanotube-reinforced composites: processing and mechanical characterization, J. Phys. D: Appl. Phys., 35, 77 (2002)
[2] Hashin, Z.; Shtrikman, S., A variational approach to the theory of the elastic behaviour of multiphase materials, J. Mech. Phys. Solids, 11, 2, 127-140 (1963) · Zbl 0108.36902
[3] Hashin, Z.; Rosen, B. W., The elastic moduli of fiber-reinforced materials, J. Appl. Mech., 31, 2, 223-232 (1964)
[4] Hershey, A. V., The elasticity of an isotropic aggregate of anisotropic cubic crystals, J. Appl. Mech.-Trans. ASME, 21, 3, 236-240 (1954) · Zbl 0059.17604
[5] Kröner, E., Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls, Zeitschrift für Physik, 151, 4, 504-518 (1958)
[6] Hill, R., A self-consistent mechanics of composite materials, J. Mech. Phys. Solids, 13, 4, 213-222 (1965)
[7] Chen, C. H., Mechanical Properties of Fiber Reinforced Composites and of Perforated Solids (1965), University of Wisconsin: University of Wisconsin Madison
[8] Chen, C. H., Fiber-reinforced composites under longitudinal shear loading, J. Appl. Mech., 37, 1, 198-201 (1970)
[9] Adams, D. F.; Doner, D. R., Longitudinal shear loading of a unidirectional composite, J. Compos. Mater., 1, 1, 4-17 (1967)
[10] Nielsen, L. E., Generalized equation for the elastic moduli of composite materials, J. Appl. Phys., 41, 11, 4626-4627 (1970)
[11] Symm, G. T., The longitudinal shear modulus of a unidirectional fibrous composite, J. Compos. Mater., 4, 426-428 (1970)
[12] Heaton, M. D., A calculation of the elastic constants of a unidirectional fibre-reinforced composite, J. Phys. D: Appl. Phys., 1, 8, 1039 (1968)
[13] Sendeckyj, G. P., Longitudinal shear deformation of composites-effective shear modulus, J. Compos. Mater., 4, 4, 500-512 (1970)
[14] Christensen, R. M.; Waals, F. M., Effective stiffness of randomly oriented fibre composites, J. Compos. Mater., 6, 3, 518-535 (1972)
[15] Christensen, R. M.; Lo, K. H., Solutions for effective shear properties in three phase sphere and cylinder models, J. Mech. Phys. Solids, 27, 4, 315-330 (1979) · Zbl 0419.73007
[16] Huang, Y.; Hu, K. X., A generalized self-consistent mechanics method for solids containing elliptical inclusions, J. Appl. Mech., 62, 3, 566-572 (1995) · Zbl 0869.73044
[17] Ru, C. Q.; Schiavone, P., On the elliptic inclusion in anti-plane shear, Math. Mech. Solids, 1, 3, 327-333 (1996) · Zbl 1001.74509
[18] Jiang, C. P.; Cheung, Y. K., A fiber/matrix/composite model with a combined confocal elliptical cylinder unit cell for predicting the effective longitudinal shear modulus, Int. J. Solids Struct., 35, 3977-3987 (1998) · Zbl 0918.73043
[19] Jiang, C. P.; Xu, Y. L.; Cheung, Y. K., A rigorous analytical method for doubly periodic cylindrical inclusions under longitudinal shear and its application, Mech. Mater., 36, 3, 225-237 (2004)
[20] Würkner, M.; Berger, H.; Gabbert, U., On numerical evaluation of effective material properties for composite structures with rhombic fiber arrangements, Int. J. Eng. Sci., 49, 4, 322-332 (2011) · Zbl 1231.74088
[21] Benveniste, Y., Magnetoelectric effect in fibrous composites with piezoelectric and piezomagnetic phases, Phys. Rev. B, 51, 22, 16424 (1995)
[22] Tong, Z. H.; Lo, S. H.; Jiang, C. P., An exact solution for the three-phase thermo-electro-magneto-elastic cylinder model and its application to piezoelectric-magnetic fiber composites, Int. J. Solids Struct., 45, 5205-5219 (2008) · Zbl 1273.74095
[23] Jiang, C. P.; Cheung, Y. K., An exact solution for the three-phase piezoelectric cylinder model under antiplane shear and its applications to piezoelectric composites, Int. J. Solids Struct., 38, 28, 4777-4796 (2001) · Zbl 1020.74016
[24] Xu, Y. L.; Lo, S. H.; Jiang, C. P., Electroelastic behavior of doubly periodic piezoelectric fiber composites under antiplane shear, Int. J. Solids Struct., 44, 3, 976-995 (2007) · Zbl 1137.74016
[25] Yan, P.; Jiang, C. P.; Song, F., An eigenfunction expansion-variational method for the anti-plane electroelastic behavior of three-phase fiber composites, Mech. Mater., 43, 10, 586-597 (2011)
[26] Espinosa-Almeyda, Y.; Rodríguez-Ramos, R.; Guinovart-Díaz, R., Antiplane magneto-electro-elastic effective properties of three-phase fiber composites, Int. J. Solids Struct., 51, 21, 3508-3521 (2014)
[27] Artioli, E.; Bisegna, P., Effective longitudinal shear moduli of periodic fibre-reinforced composites with functionally-graded fibre coatings, Int. J. Solids Struct., 50, 7, 1154-1163 (2013)
[28] Hashin, Z., Thermoelastic properties of fiber composites with imperfect interface, Mech. Mater., 8, 4, 333-348 (1990)
[29] Ru, C. Q.; Schiavone, P., (Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, A circular inclusion with circumferentially inhomogeneous interface in antiplane shear, 453 (1997), The Royal Society), 2551-2572 · Zbl 0910.73009
[30] Shen, H.; Schiavone, P.; Ru, C. Q., An elliptic inclusion with imperfect interface in anti-plane shear, Int. J. Solids Struct., 37, 33, 4557-4575 (2000) · Zbl 0968.74021
[31] Hashin, Z., Thin interphase/imperfect interface in elasticity with application to coated fiber composites, J. Mech. Phys. Solids, 50, 12, 2509-2537 (2002) · Zbl 1080.74006
[32] Caporale, A.; Luciano, R.; Sacco, E., Micromechanical analysis of interfacial debonding in unidirectional fiber-reinforced composites, Comput. Struct., 84, 31, 2200-2211 (2006)
[33] Duan, H. L.; Yi, X.; Huang, Z. P., A unified scheme for prediction of effective moduli of multiphase composites with interface effects: Part II—application and scaling laws, Mech. Mater., 39, 1, 94-103 (2007)
[34] Würkner, M.; Berger, H.; Gabbert, U., Numerical study of effective elastic properties of fiber reinforced composites with rhombic cell arrangements and imperfect interface, Int. J. Eng. Sci., 63, 1-9 (2013)
[35] López-Realpozo, J. C.; Rodríguez-Ramos, R.; Guinovart-Díaz, R., Effective elastic shear stiffness of a periodic fibrous composite with non-uniform imperfect contact between the matrix and the fibers, Int. J. Solids Struct., 51, 6, 1253-1262 (2014)
[36] Wang, X.; Pan, E., Magnetoelectric effects in multiferroic fibrous composite with imperfect interface, Phys. Rev. B, 76, 21, Article 214107 pp. (2007)
[37] Shodja, H.; Tabatabaei, S.; Kamali, M., A piezoelectric medium containing a cylindrical inhomogeneity: role of electric capacitors and mechanical imperfections, Int. J. Solids Struct., 44, 6361-6381 (2007) · Zbl 1166.74344
[38] Espinosa-Almeyda, Y.; López-Realpozo, J. C.; Rodríguez-Ramos, R., Effects of interface contacts on the magneto electro-elastic coupling for fiber reinforced composites, Int. J. Solids Struct., 48, 10, 1525-1533 (2011) · Zbl 1236.74057
[39] Wang, Z.; Zhu, J.; Chen, W. Q.; Jin, X. Y.; Zhang, C. Z., Modified Eshelby tensor for an ellipsoidal inclusion imperfectly embedded in an infinite piezoelectric medium, Mech. Mater., 74, 56-66 (2014)
[40] Gurtin, M. E.; Murdoch, A. I., A continuum theory of elastic material surfaces, Arch. Ration. Mech. Anal., 57, 4, 291-323 (1975) · Zbl 0326.73001
[41] Gurtin, M. E.; Murdoch, A. I., Surface stress in solids, Int. J. Solids Struct., 14, 6, 431-440 (1978) · Zbl 0377.73001
[42] Sharma, P.; Ganti, S.; Bhate, N., Effect of surfaces on the size-dependent elastic state of nano-inhomogeneities, Appl. Phys. Lett., 82, 4, 535-537 (2003)
[43] Duan, H. L.; Wang, J.; Huang, Z. P., Stress concentration tensors of inhomogeneities with interface effects, Mech. Mater., 37, 7, 723-736 (2005)
[44] Lim, C. W.; Li, Z. R.; He, L. H., Size dependent, non-uniform elastic field inside a nano-scale spherical inclusion due to interface stress, Int. J. Solids Struct., 43, 17, 5055-5065 (2006) · Zbl 1120.74380
[45] Luo, J.; Wang, X., On the anti-plane shear of an elliptic nano inhomogeneity, Eur. J. Mech.-A/Solids, 28, 5, 926-934 (2009) · Zbl 1176.74045
[46] Brisard, S.; Dormieux, L.; Kondo, D., Hashin-Shtrikman bounds on the shear modulus of a nanocomposite with spherical inclusions and interface effects, Comput. Mater. Sci., 50, 2, 403-410 (2010)
[47] Mogilevskaya, S. G.; Crouch, S. L.; La Grotta, A., The effects of surface elasticity and surface tension on the transverse overall elastic behavior of unidirectional nano-composites, Compos. Sci. Technol., 70, 3, 427-434 (2010)
[48] Xiao, J. H.; Xu, Y. L.; Zhang, F. C., Size-dependent effective electroelastic moduli of piezoelectric nanocomposites with interface effect, Acta Mech., 222, 59-67 (2011) · Zbl 1269.74190
[49] Li, P. J.; Wang, Q. Z.; Shi, S. F., Differential scheme for the effective elastic properties of nano-particle composites with interface effect, Comput. Mater. Sci., 50, 3230-3237 (2011)
[50] Kushch, V. I.; Mogilevskaya, S. G.; Stolarski, H. K., Elastic fields and effective moduli of particulate nanocomposites with the Gurtin-Murdoch model of interfaces, Int. J. Solids Struct., 50, 7, 1141-1153 (2013)
[51] Kushch, V.; Chernobai, V.; Mishuris, G., Longitudinal shear of a composite with elliptic nanofibers: local stresses and effective stiffness, Int. J. Eng. Sci., 84, 79-94 (2014)
[52] Xiao, J. H.; Xu, Y. L.; Zhang, F. C., A generalized self-consistent method for nanocomposites accounting for fiber section shape under antiplane shear, Mech. Mater., 81, 94-100 (2015)
[53] Chen, T., Exact size-dependent connections between effective moduli of fibrous piezoelectric nanocomposites with interface effects, Acta Mech., 196, 205-217 (2008) · Zbl 1139.74045
[54] Perrins, W. T.; McKenzie, D. R.; McPhedran, R. C., (Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences, Transport Properties of Regular Arrays of Cylinders, 369 (1979), The Royal Society), 207-225
[55] Jiang, C. P.; Liu, Z. G., A closed solution and its applications for the 3-phase confocal ellipse model under longitudinal shear, Acta Mech. Sin., 32, 2, 251-256 (2000), (in Chinese)
[56] Kushch, V. I.; Chernobai, V. S., Transverse conductivity and longitudinal shear of elliptic fiber composite with imperfect interface, Int. J. Solids Struct., 51, 13, 2529-2538 (2014)
[57] Hasselman, D. P.H.; Johnson, L. F., Effective thermal conductivity of composites with interfacial thermal barrier resistance, J, Comp. Mat., 21, 508-515 (1987)
[58] López-Realpozo, J. C.; Rodríguez-Ramos, R.; Guinovart-Díaz, R., Transport properties in fibrous elastic rhombic composite with imperfect contact condition, Int. J. Mech. Sci., 53, 2, 98-107 (2011)
[59] Rocha, R. P.A.; Cruz, M. A.E., Computation of the effective conductivity of unidirectional fibrous composites with an interfacial thermal resistance, Numer. Heat Trans.: Part A: Appl., 39, 2, 179-203 (2001)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.