×

High-order numerical simulation of axisymmetric wave phase conjugation. (English) Zbl 1519.76310

Summary: In the present paper, a general physico-mathematical model of magneto-acoustic Wave Phase Conjugation (WPC) is proposed, which includes wave propagation both in solid zones (the conjugator itself and other solid regions, if present) and in fluid zones surrounding the conjugator. Acoustic waves in the solid zones are assumed to behave linearly while in the fluid zones the waves may be either linear or non-linear. The axisymmetric governing equations of the model are discretized on an unstructured triangular mesh with a modified version of the Nodal Discontinuous Galerkin (NDG) method, which is a compact, high-order technique based on non-collocated solution and flux bases. The third-order Strong Stability-Preserving (SSP) Runge-Kutta (RK) scheme is used for integration in time. To avoid any false reflections from the outer boundaries of the computational domain the Nearly Perfectly Matched Layer (NPML) technique is adopted. A comprehensive set of test problems addressing all facets of the proposed numerical model is used for verification via comparison with analytical solutions. After the accuracy, performance, and reliability of the proposed model are established, two WPC problems are numerically simulated for the linear and weakly non-linear regimes. The main WPC properties, such as retro-focusing and parametric resonance, are observed in the numerical experiments with good accuracy.

MSC:

76Q05 Hydro- and aero-acoustics
76M10 Finite element methods applied to problems in fluid mechanics
65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs

Software:

polyquad; ParaView; Gmsh
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Brysev, AP; Krutyanskii, LM; Preobrazhenskii, VL, Wave phase conjugation of ultrasonic beams, Phys-Uspekhi, 41, 8, 793-805 (1998)
[2] Zel’dovich, BY; Popovichev, V.; Ragul’skii, V.; Faizullov, F., Connection between the wave fronts of the reflected and exciting light in stimulated Mandel’shtam-Brillouin scattering, JETP Lett, 15, 109-112 (1972)
[3] Svaasand, LO, Interaction between elastic surface waves in piezoelectric materials, Appl Phys Lett, 15, 9, 300-302 (1969)
[4] Merlen, A.; Zhang, Q., Theory and simulation of wave phase conjugation, Ultrasonics, 44, e1475-e1478 (2006)
[5] Merlen, A.; Zhang, Q.; Voinovich, P.; Timofeev, E., Duality of the supercritical solutions in magnetoacoustic wave phase conjugation, Wave Motion, 46, 4, 255-268 (2009) · Zbl 1231.74126
[6] Brysev, AP; Bunkin, FV; Krutyansky, LM; Yan, X.; Hamilton, MF, Focused nonlinear phase-conjugate waves generated by a solid parametric amplifier, J Acoust Soc Am, 118, 6, 3733-3736 (2005)
[7] Merlen, A.; Preobrazhensky, VL; Pernod, P., Supercritical parametric phase conjugation of ultrasound. numerical simulation of nonlinear and nonstationary mode, J Acoust Soc Am, 112, 6, 2656-2665 (2002)
[8] Preobrazhensky, V., Overthreshold nonlinearity of parametric sound wave phase conjugation in solids, Jpn J Appl Phys, 32, Part 1, No. 5B, 2247-2251 (1993)
[9] Fink, M.; Montaldo, G.; Tanter, M., Time reversal acoustics, IEEE ultrasonics symposium, vol. 2, 850-859 (2004), Institute of Electrical & Electronics Engineers (IEEE)
[10] Brysev, AP; Krutyansky, LM; Pernod, P.; Preobrazhensky, VL, Nonlinear ultrasonic phase-conjugate beams and their application in ultrasonic imaging, Acoust Phys, 50, 6, 623-640 (2004)
[11] Yamamoto, K.; Pernod, P.; Preobrazhensky, V., Visualization of phase conjugate ultrasound waves passed through inhomogeneous layer, Ultrasonics, 42, 1-9, 1049-1052 (2004)
[12] Brysev, A.; Krutyansky, L.; Pernod, P.; Preobrazhensky, V., Acoustic microscope based on magneto-elastic wave phase conjugator, Appl Phys Lett, 76, 21, 3133-3135 (2000)
[13] Krutyansky, L.; Pernod, P.; Brysev, A.; Bunkin, F.; Preobrazhensky, V., Supercritical parametric wave phase conjugation as an instrument for narrowband analysis in ultrasonic harmonic imaging, IEEE Trans Ultrason Ferroelectr Freq Control, 49, 4, 409-414 (2002)
[14] Pylnov, Y.; Pernod, P.; Preobrazhensky, V., Acoustic imaging by second harmonic of phase-conjugate wave in inhomogeneous medium, Appl Phys Lett, 78, 4, 553-555 (2001)
[15] Krutyansky, L.; Preobrazhensky, V.; Pernod, P.; Bou Matar, O., Nonlinear imaging of isoechogenic phantoms using phase conjugation of the second acoustic harmonic, Phys Wave Phenom, 15, 3, 186-190 (2007)
[16] Preobrazhensky, SV; Preobrazhensky, VL; Pernod, P.; Bou Matar, O., Testing for inhomogeneity of the nonlinear parameter in an acoustic medium by ultrasonic phase conjugation, Acoust Phys, 54, 1, 15-19 (2008)
[17] Preobrazhensky, V.; Pernod, P.; Pylnov, Y.; Krutyansky, L.; Smagin, N.; Preobrazhensky, S., Nonlinear acoustic imaging of isoechogenic objects and flows using ultrasound wave phase conjugation, Acta Acust United Acust, 95, 1, 36-45 (2009)
[18] Pylnov, YV, Detection of moving objects and flows in liquids by ultrasonic phase conjugation, Acoust Phys, 51, 1, 105 (2005)
[19] Preobrazhensky, VL, Parametrically phase-conjugate waves: applications in nonlinear acoustic imaging and diagnostics, Phys-Uspekhi, 49, 1, 98-102 (2006)
[20] Brysev, AP; Bunkin, FV; Hamilton, MF; Klopotov, RV; Krutyanskii, LM; Yan, K., Parametric phase conjugation for the second harmonic of a nonlinear ultrasonic beam, Acoust Phys, 49, 1, 19-23 (2003)
[21] Merlen, A.; Zhang, Q., Paraxial theory of supercritical wave phase conjugation in a realistic magnetoacoustic conjugator, Appl Phys Lett, 89, 19, 194102 (2006)
[22] Merlen, A.; Zhang, Q., Resonant solutions in wave phase conjugation induced by a limited magnetoacoustic conjugator, J Acoust Soc Am, 119, 6, 3637-3648 (2006)
[23] Pernod, P.; Preobrazhensky, V., Parametric phase conjugation of a wide-band acoustic pulse in supercritical mode, Appl Phys Lett, 76, 3, 387-389 (2000)
[24] Khelil, SB; Merlen, A.; Preobrazhensky, V.; Pernod, P., Numerical simulation of acoustic wave phase conjugation in active media, J Acoust Soc Am, 109, 1, 75-83 (2001)
[25] Voinovich, P.; Merlen, A., Two-dimensional numerical simulation of acoustic wave phase conjugation in magnetostrictive elastic media, J Acoust Soc Am, 118, 6, 3491-3498 (2005)
[26] Voinovich, P.; Merlen, A.; Timofeev, E.; Takayama, K., A Godunov-type finite-volume scheme for unified solid-liquid elastodynamics on arbitrary two-dimensional grids, Shock Waves, 13, 3, 221-230 (2003) · Zbl 1063.76064
[27] Bou Matar, O.; Preobrazhensky, V.; Pernod, P., Two-dimensional axisymmetric numerical simulation of supercritical phase conjugation of ultrasound in active solid media, J Acoust Soc Am, 118, 5, 2880-2890 (2005)
[28] Cunningham, KB; Hamilton, MF; Brysev, AP; Krutyansky, LM, Time-reversed sound beams of finite amplitude, J Acoust Soc Am, 109, 6, 2668-2674 (2001)
[29] Leadbetter, J.; Timofeev, E.; Merlen, A.; Frost, D., On the high order numerical modeling of ultrasonic waves in fluids, Proc. of the 19th Annual conference of CFD Society of Canada, Montreal, Quebec April 27-29 (2011)
[30] Leadbetter, J., High order numerical models for high amplitude ultrasonic wave propagation (2011), Master’s thesis. McGill University, http://digitool.Library.McGill.CA:80/R/-?func=dbin-jump-full&object_id=104880&silo_library=GEN01
[31] Ginter, S.; Liebler, M.; Steiger, E.; Dreyer, T.; Riedlinger, RE, Full-wave modeling of therapeutic ultrasound: nonlinear ultrasound propagation in ideal fluids, J Acoust Soc Am, 111, 5, 2049-2059 (2002)
[32] Van den Abeele, K., Development of high-order accurate schemes for unstructured grids (2009), Ph.D. thesis. Vrije Universiteit Brussel
[33] Wang, Z., High-order methods for the Euler and Navier-Stokes equations on unstructured grids, Prog Aerosp Sci, 43, 1-3, 1-41 (2007)
[34] Haga, T.; Gao, H.; Wang, ZJ, A high-order unifying discontinuous formulation for the Navier-Stokes equations on 3D mixed grids, Math Model Nat Phenom, 6, 3, 28-56 (2011) · Zbl 1239.76044
[35] Huynh, H.; Wang, Z.; Vincent, P., High-order methods for computational fluid dynamics: a brief review of compact differential formulations on unstructured grids, Comput Fluids, 98, 209-220 (2014) · Zbl 1390.65123
[36] Vincent, PE; Castonguay, P.; Jameson, A., A new class of high-order energy stable flux reconstruction schemes, J Sci Comput, 47, 1, 50-72 (2010) · Zbl 1433.76094
[37] Yu, M.; Wang, Z., On the accuracy and efficiency of several discontinuous high-order formulations, 51st AIAA Aerospace sciences meeting including the New Horizons Forum and Aerospace exposition, AIAA 2013-0855 (2013), American Institute of Aeronautics and Astronautics (AIAA): American Institute of Aeronautics and Astronautics (AIAA) Grapevine, Texas
[38] Wang, Z.; Gao, H., A unifying lifting collocation penalty formulation including the discontinuous Galerkin, spectral volume/difference methods for conservation laws on mixed grids, J Comput Phys, 228, 21, 8161-8186 (2009) · Zbl 1173.65343
[39] Reed, W. H.; Hill, T., Triangular mesh methods for the neutron transport equation, Los Alamos Report LA-UR-73-479 (1973)
[40] Van Leer, B., Towards the ultimate conservative difference scheme. IV. A new approach to numerical convection, J Comput Phys, 23, 3, 276-299 (1977) · Zbl 0339.76056
[41] Cockburn, B.; Hou, S.; Shu, C-W, The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws. IV. The multidimensional case, Math Comput, 54, 190, 545 (1990) · Zbl 0695.65066
[42] Cockburn, B.; Shu, C-W, Runge-Kutta discontinuous Galerkin methods for convection-dominated problems, J Sci Comput, 16, 3, 173-261 (2001) · Zbl 1065.76135
[43] Bassi, F.; Rebay, S., High-order accurate discontinuous finite element solution of the 2D Euler equations, J Comput Phys, 138, 2, 251-285 (1997) · Zbl 0902.76056
[44] Bassi, F.; Rebay, S., A high-order accurate discontinuous finite element method for the numerical solution of the compressible Navier-Stokes equations, J Comput Phys, 131, 2, 267-279 (1997) · Zbl 0871.76040
[45] Hesthaven, J. S.; Warburton, T., nodal discontinuous Galerkin methods: algorithms, analysis, and applications (2008), Springer New York · Zbl 1134.65068
[46] Yu, M.; Wang, Z.; Liu, Y., On the accuracy and efficiency of discontinuous Galerkin, spectral difference and correction procedure via reconstruction methods, J Comput Phys, 259, 70-95 (2014) · Zbl 1349.65591
[47] Ketcheson, DI, Highly efficient strong stability-preserving Runge-Kutta methods with low-storage implementations, SIAM J Sci Comput, 30, 4, 2113-2136 (2008) · Zbl 1168.65382
[48] Macdonald, C. B., constructing high-order Runge-Kutta methods with embedded strong-stability-preserving Pairs (2003), Master’s thesis. Simon Fraser University
[49] Gottlieb, S.; Shu, C-W, Total variation diminishing Runge-Kutta schemes, Math Comput, 67, 221, 73-85 (1998) · Zbl 0897.65058
[50] Berenger, J-P, A perfectly matched layer for the absorption of electromagnetic waves, J Comput Phys, 114, 2, 185-200 (1994) · Zbl 0814.65129
[51] Li, Y.; Bou Matar, O.; Bao, Y., Nearly perfectly matched layer (NPML) absorbing boundary condition for elastic waves propagation in solid, J Acoust Soc Am, 131, 4, 3443 (2012)
[52] Cummer, S., A simple, nearly perfectly matched layer for general electromagnetic media, IEEE Microw Wirel Compon Lett, 13, 3, 128-130 (2003)
[53] Hu, W.; Abubakar, A.; Habashy, T. M., Application of the nearly perfectly matched layer in acoustic wave modeling, Geophysics, 72, 5, SM169-SM175 (2007)
[54] Hamilton, M. F.; Blackstock, D. T., Nonlinear acoustics, vol. 1 (1998), Academic press San Diego
[55] Brysev, A.; Pernod, P.; Preobrazhensky, V., Magneto-acoustic ceramics for parametric sound wave phase conjugators, Ultrasonics, 38, 1-8, 834-837 (2000)
[56] Geuzaine, C.; Remacle, J-F, Gmsh: a 3-d finite element mesh generator with built-in pre-and post-processing facilities, Int J Numer Methods Fluids, 79, 11, 1309-1331 (2009) · Zbl 1176.74181
[57] Ahrens, J.; Geveci, B.; Law, C., Paraview: an end-user tool for large data visualization, The visualization handbook, 717 (2005)
[58] Witherden, FD; Vincent, PE, An analysis of solution point coordinates for flux reconstruction schemes on triangular elements, J Sci Comput, 61, 2, 398-423 (2014) · Zbl 1299.76153
[59] Spiegel, SC; Huynh, H.; DeBonis, JR, De-aliasing through over-integration applied to the flux reconstruction and discontinuous Galerkin methods, 22nd AIAA Computational fluid dynamics conference, AIAA 2015-2744 (2015), American Institute of Aeronautics and Astronautics (AIAA): American Institute of Aeronautics and Astronautics (AIAA) Dallas, TX
[60] Witherden, FD; Vincent, PE, On the identification of symmetric quadrature rules for finite element methods, Comput Math Appl, 69, 10, 1232-1241 (2015) · Zbl 1443.65378
[61] Abramowitz, M.; Stegun, I. A., Handbook of mathematical functions: with formulas, graphs, and mathematical tables, vol. 55 (1965), Courier Corporation · Zbl 0515.33001
[62] LeVeque, RJ, Wave propagation algorithms for multidimensional hyperbolic systems, J Comput Phys, 131, 2, 327-353 (1997) · Zbl 0872.76075
[63] Enflo, B. O.; Hedberg, C. M., Theory of nonlinear acoustics in fluids, vol. 67 (2006), Springer Science & Business Media
[64] Kinsler, L. E.; Frey, A. R.; Coppens, A. B.; Sanders, J. V., Fundamentals of acoustics (2000), J. Wiley
[65] Beltzer, A. I., Acoustics of solids (2012), Springer Science & Business Media · Zbl 0653.73015
[66] Diaz, J.; Ezziani, A., Analytical solution for waves propagation in heterogeneous acoustic/porous media. part i: the 2d case, Commun Comput Phys, 7, 1, 171 (2010) · Zbl 1364.74032
[67] Komatitsch, D.; Barnes, C.; Tromp, J., Wave propagation near a fluid-solid interface: a spectral-element approach, Geophysics, 65, 2, 623-631 (2000)
[68] Modarreszadeh, A.; Timofeev, E.; Merlen, A.; Pernod, P., Numerical simulation of bubble size measurement via wave phase conjugation, 26th International congress on sound and vibration (ICSV26), Montreal, Canada (2019), https://iiav.org/content/archives_icsv_last/2019_icsv26/content/papers/papers/full_paper_333_20190315211802529.pdf
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.