×

Infinite polytopes in Hurwitz stability region. (English) Zbl 1429.93062

Summary: We consider Hurwitz stability region in the parameter space of monic polynomials. Firstly, a multilinear map from the positive first octant of the cartesian coordinate system to the stability region is defined. Based on this map a necessary and sufficient condition for stability is obtained. Starting from stable points, polytopes with infinite edge lengths are defined. Stability of the edges of these polytopes is equivalent to the stability of the convex combinations of third and fourth order factor polynomials. If all edges of polytope are stable then by the edge theorem the polytope is robust stable. The obtained result is important for understanding the geometry of stability domain, and can be used for generation of convex subsets of stable polynomials and for stabilization by fixed order controllers and other related problems.

MSC:

93B27 Geometric methods
93D09 Robust stability
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ackermann, J.; Kaesbauer, D., Stable polyhedra in parameter space, Automatica, 39, 937-943 (2003) · Zbl 1022.93016
[2] Aguirre, B.; Ibarra, C.; Suárez, R., Algebraic conditions for stability of cones of polynomials, Systems & Control Letters, 46, 255-263 (2002) · Zbl 0994.93053
[3] Aguirre-Hernández, B.; Frías-Armenta, M. E.; Verduzco, F., Smooth trivial vector bundle structure of the space of hurwitz polynomials, Automatica, 45, 2864-2868 (2009) · Zbl 1206.55018
[4] Aguirre-Hernández, B.; García-Sosa, R.; Leyva, H.; Solís-Daun, J.; Carrillo, F. A., Conditions for the schur stability of segments of polynomials of the same degree, Boletín de la Sociedad Matemática Mexicana, 21, 309-321 (2009) · Zbl 1327.93201
[5] Barmish, B. R., New tools for robustness of linear systems (1994), Macmillan Publishing Company: Macmillan Publishing Company New York · Zbl 1094.93517
[6] Bartlett, A. C.; Hollot, C. V.; Lin, H., Root locations of an entire polytope of polynomials: It suffices to check the edges, Mathematics of Control, Signals, and Systems, 1, 1, 61-71 (1988) · Zbl 0652.93048
[7] Bhattacharyya, S. P.; Chapellat, H.; Keel, L. H., Robust control: The parametric approach (1995), Prentice-Hall: Prentice-Hall New Jersey · Zbl 0838.93008
[8] Bialas, S., A necessary and sufficient condition for the stability of convex combinations of stable polynomials or matrices, Bulletin of the Polish Academy of Sciences: Technical Sciences, 33, 473-480 (1985) · Zbl 0607.93044
[9] Büyükköroğlu, T.; Çelebi, G.; Dzhafarov, V., Stabilisation of discrete-time systems via schur stability region, International Journal of Control, 91, 7, 1620-1629 (2018) · Zbl 1440.93183
[10] Choque-Rivero, A. E., (The kharitonov theorem and robust stabilization via orthogonal polynomials. The kharitonov theorem and robust stabilization via orthogonal polynomials, Visnyk of V.N.Karazin Kharkiv National University Ser. Mathematics, Applied Mathematics and Mechanics, vol. 86 (2017)), 49-68 · Zbl 1399.34179
[11] Devroye, L., Non-Uniform RandOm Variate Generation (1986), Springer-Verlag: Springer-Verlag New York · Zbl 0593.65005
[12] Fam, A. T.; Meditch, J. S., A canonical parameter space for linear systems, IEEE Transactions on Automatic Control, 23, 3, 454-458 (1978) · Zbl 0377.93021
[13] Henrion, D.; Peaucelle, D.; Arzelier, D.; Šebek, M., Ellipsoidal approximation of the stability domain of a polynomial, IEEE Transactions on Automatic Control, 48, 12, 2255-2259 (2003) · Zbl 1364.93568
[14] Hernández-Galván, B. L.; López-Rentería, J. A.; Aguirre-Hernández, B.; Fernández-Anaya, G., Robust stability in discrete control systems via linear controllers with single and delayed time, Mathematical Problems in Engineering, 11 (2018), 3674628 · Zbl 1427.93185
[15] Hinrichsen, D.; Pritchard, A. J., Texts in applied mathematics: vol. 48, mathematical systems theory I. modelling, state space analysis, stability and robustness (2005), Springer-Verlag: Springer-Verlag Berlin
[16] Jetto, L., Strong stabilization over polytopes, IEEE Transactions on Automatic Control, 44, 6, 1211-1216 (2003) · Zbl 0955.93025
[17] Kale, A. A.; Tits, L., On kharitonov’s theorem without invariant degree assumption, Automatica, 36, 1075-1076 (2000) · Zbl 1044.93531
[18] Keel, L. H.; Rego, J. I.; Bhattacharyya, S. P., A new approach to digital PID controller design, IEEE Transactions on Automatic Control, 48, 4, 687-692 (2003) · Zbl 1364.93281
[19] Kharitonov, V. L., Asymptotic stability of an equilibrium position of a family of systems of linear differential equations, Differentsial’nye Uravneniya, 14, 2086-2088 (1978)
[20] López-Rentería, J.; Aguirre-Hernández, B.; Verduzco, F., The boundary crossing theorem and the maximal stability interval, Mathematical Problems in Engineering, 13 (2011), 123403 · Zbl 1225.93089
[21] López-Rentería, J.; Aguirre-Hernández, B.; Verduzco, F., Stable polynomial curves and some properties with application in control, Boletín de la Sociedad Matemática Mexicana, 23, 869-889 (2017) · Zbl 1379.93056
[22] Malik, W. A.; Darbha, S.; Bhattacharyya, S. P., A linear programming approach to the synthesis of fixed-structure controllers, IEEE Transactions on Automatic Control, 53, 6, 1341-1352 (2008) · Zbl 1367.93216
[23] Nurges, Ü., New stability conditions via reflection coefficients of polynomials, IEEE Transactions on Automatic Control, 50, 9, 1354-1360 (2005) · Zbl 1365.93352
[24] Polyak, B. T.; Shcherbakov, P. S., Hard problems in linear control theory: possible approach to solution, Automation and Remote Control, 66, 5, 7-46 (2005)
[25] Tempo, R.; Calafiore, G.; Dabbene, F., Randomized algorithms for analysis and control of uncertain systems (2013), Springer: Springer London · Zbl 1280.93002
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.