You, Xuexiao; Zhao, Dafang; Cheng, Jian; Li, Tongxing The fuzzy \(C\)-delta integral on time scales. (English) Zbl 1438.26115 J. Nonlinear Sci. Appl. 11, No. 1, 161-171 (2018). MSC: 26E50 26A42 26E70 PDF BibTeX XML Cite \textit{X. You} et al., J. Nonlinear Sci. Appl. 11, No. 1, 161--171 (2018; Zbl 1438.26115) Full Text: DOI
Ji, Zhengchao; Ding, Qing; Zhao, Tiehong Optimal inequalities for a Toader-type mean by quadratic and contraharmonic means. (English) Zbl 1438.26116 J. Nonlinear Sci. Appl. 11, No. 1, 150-160 (2018). MSC: 26E60 33E05 PDF BibTeX XML Cite \textit{Z. Ji} et al., J. Nonlinear Sci. Appl. 11, No. 1, 150--160 (2018; Zbl 1438.26116) Full Text: DOI
Kongban, Chayut; Kumam, Poom Quadruple random common fixed point results of generalized Lipschitz mappings in cone \(b\)-metric spaces over Banach algebras. (English) Zbl 1449.54071 J. Nonlinear Sci. Appl. 11, No. 1, 131-149 (2018). MSC: 54H25 54E40 PDF BibTeX XML Cite \textit{C. Kongban} and \textit{P. Kumam}, J. Nonlinear Sci. Appl. 11, No. 1, 131--149 (2018; Zbl 1449.54071) Full Text: DOI
Zhang, Jingling; Agarwal, Ravi P.; Jiang, Nan Accelerated hybrid iterative algorithm for common fixed points of a finite families of countable Bregman quasi-Lipschitz mappings and solutions of generalized equilibrium problem with application. (English) Zbl 1438.47127 J. Nonlinear Sci. Appl. 11, No. 1, 108-130 (2018). MSC: 47J25 47H05 47H09 PDF BibTeX XML Cite \textit{J. Zhang} et al., J. Nonlinear Sci. Appl. 11, No. 1, 108--130 (2018; Zbl 1438.47127) Full Text: DOI
Suzuki, Tomonari Fixed point theorems for contractions of rational type in complete metric spaces. (English) Zbl 1438.54165 J. Nonlinear Sci. Appl. 11, No. 1, 98-107 (2018). MSC: 54H25 PDF BibTeX XML Cite \textit{T. Suzuki}, J. Nonlinear Sci. Appl. 11, No. 1, 98--107 (2018; Zbl 1438.54165) Full Text: DOI
Alotaibi, A. M.; El-Moneam, M. A.; Noorani, M. S. M. On the rational difference equation \(y_{{n+1}}={\frac{\alpha_{0}y_{{n}}+\alpha_{1}y_{{n-p}}+\alpha_{2}y_{{n-q}} +\alpha_{3}y_{{n-r}}+\alpha_{4}y_{{n-s}}}{\beta_{0}y_{{n}}+\beta_{1}y_{{n-p}}+\beta_{2}y_{{n-q}}+\beta_{3}y_{{n-r}}+\beta_{4}y_{{n-s}}}}\). (English) Zbl 1438.39006 J. Nonlinear Sci. Appl. 11, No. 1, 80-97 (2018). MSC: 39A20 39A22 39A30 PDF BibTeX XML Cite \textit{A. M. Alotaibi} et al., J. Nonlinear Sci. Appl. 11, No. 1, 80--97 (2018; Zbl 1438.39006) Full Text: DOI
Bachar, M.; Khamsi, Mohamed A.; Kozlowski, W. M.; Bounkhel, M. Common fixed points of monotone Lipschitzian semigroups in Banach spaces. (English) Zbl 1438.47095 J. Nonlinear Sci. Appl. 11, No. 1, 73-79 (2018). MSC: 47H20 47H10 47H09 47H05 PDF BibTeX XML Cite \textit{M. Bachar} et al., J. Nonlinear Sci. Appl. 11, No. 1, 73--79 (2018; Zbl 1438.47095) Full Text: DOI
El-Dessoky, M. M.; Khaliq, A.; Asiri, A. On some rational systems of difference equations. (English) Zbl 1438.39007 J. Nonlinear Sci. Appl. 11, No. 1, 49-72 (2018). MSC: 39A20 39A30 PDF BibTeX XML Cite \textit{M. M. El-Dessoky} et al., J. Nonlinear Sci. Appl. 11, No. 1, 49--72 (2018; Zbl 1438.39007) Full Text: DOI
Chen, Xiaoli Boundedness criteria for commutators of some sublinear operators in weighted Morrey spaces. (English) Zbl 1438.42037 J. Nonlinear Sci. Appl. 11, No. 1, 26-48 (2018). MSC: 42B25 42B30 PDF BibTeX XML Cite \textit{X. Chen}, J. Nonlinear Sci. Appl. 11, No. 1, 26--48 (2018; Zbl 1438.42037) Full Text: DOI
Yang, Shuiping Finite difference method for Riesz space fractional diffusion equations with delay and a nonlinear source term. (English) Zbl 1449.65207 J. Nonlinear Sci. Appl. 11, No. 1, 17-25 (2018). MSC: 65M06 35R11 65M12 PDF BibTeX XML Cite \textit{S. Yang}, J. Nonlinear Sci. Appl. 11, No. 1, 17--25 (2018; Zbl 1449.65207) Full Text: DOI
Li, Qiao-Luan; Cheung, Wing-Sum Lyapunov-type inequalities for Laplacian systems and applications to boundary value problems. (English) Zbl 1438.26079 J. Nonlinear Sci. Appl. 11, No. 1, 8-16 (2018). MSC: 26D15 26D10 34B15 PDF BibTeX XML Cite \textit{Q.-L. Li} and \textit{W.-S. Cheung}, J. Nonlinear Sci. Appl. 11, No. 1, 8--16 (2018; Zbl 1438.26079) Full Text: DOI
Zhou, Sizhong An existence theorem on Hamiltonian \((g,f)\)-factors in networks. (English) Zbl 1438.05206 J. Nonlinear Sci. Appl. 11, No. 1, 1-7 (2018). MSC: 05C70 05C45 05C82 PDF BibTeX XML Cite \textit{S. Zhou}, J. Nonlinear Sci. Appl. 11, No. 1, 1--7 (2018; Zbl 1438.05206) Full Text: DOI