×

Aerodynamics analysis of wheel configurations in paralympic hand-cycling: a computational study. (English) Zbl 1473.76048

Summary: Para-cycling aerodynamics holds additional complexities compared to its able-bodied counterpart. Hand-cycling provides such an example, where three wheels opposed to the two wheels of a traditional bicycle are required. Wheel aerodynamics are therefore even more prevalent in the field of Paralympic hand-cycling. However, there has been little attention devoted to wheel aerodynamics in Paralympic hand-cycling. This study investigates hand-cycling wheel aerodynamics. The optimal wheel selection was investigated from a combination of wheels that represented competitive deep-section spoked wheels and disk wheels. In addition to the various wheel combinations, the spacing between the two rear wheels was varied. A 55cm rear wheel spacing provided drag reductions of up to 4.7% compared to 70cm when using rear disk wheels at \(0^\circ\) yaw. Crosswinds were also investigated, and it was shown that a front disk wheel coupled with rear deep-section wheels at 55cm spacing provided the best aerodynamic drag performance with increasing yaw angle. With this wheel setup, the \(\mathrm{C_{\mathrm{D}}}\mathrm{A}\) increased by only 7.7%, between min and max values found at \(0^\circ\) and \(15^\circ\) yaw respectively.

MSC:

76N25 Flow control and optimization for compressible fluids and gas dynamics
76N15 Gas dynamics (general theory)
76M99 Basic methods in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] UCI, Cycling Regulations, Part 16 Para-Cycling, version on 01/02/2017, (2017). http://www.uci.ch/mm/Document/News/Rulesandregulation/16/26/73/16-PAR-20170201-E_English.PDF; UCI, Cycling Regulations, Part 16 Para-Cycling, version on 01/02/2017, (2017). http://www.uci.ch/mm/Document/News/Rulesandregulation/16/26/73/16-PAR-20170201-E_English.PDF
[2] Blocken, B.; van Druenen, T.; Toparlar, Y.; Malizia, F.; Mannion, P.; Andrianne, T.; Marchal, T.; Maas, G.-J.; Diepens, J., Aerodynamic drag in cycling pelotons: New insights by CFD simulation and wind tunnel testing, J. Wind Eng. Ind. Aerodyn., 179, 319-337 (2018)
[3] Crouch, T. N.; Burton, D.; LaBry, Z. A.; Blair, K. B., Riding against the wind: a review of competition cycling aerodynamics, Sport. Eng., 20, 81-110 (2017)
[4] a Lukes, R.; Chin, S. B.; Haake, S. J., The understanding and development of cycling aerodynamics, Sport. Eng., 8, 59-74 (2005)
[5] Kyle, C. R.; Burke, E. R., Improving the racing bicycle, Mech. Eng., 106, 34-45 (1984)
[6] Barry, N.; Burton, D.; Sheridan, J.; Thompson, M.; Brown, N. A.T., Aerodynamic drag interactions between cyclists in a team pursuit, Sport. Eng., 18, 93-103 (2015)
[7] Barry, N.; Burton, D.; Sheridan, J.; Thompson, M.; Brown, N. A.T., Flow field interactions between two tandem cyclists, Exp. Fluids., 57, 1-14 (2016)
[8] Blocken, B.; Defraeye, T.; Koninckx, E.; Carmeliet, J.; Hespel, P., CFD Simulations of the aerodynamic drag of two drafting cyclists, Comput. Fluids., 71, 435-445 (2013)
[9] Defraeye, T.; Blocken, B.; Koninckx, E.; Hespel, P.; Verboven, P.; Nicolai, B.; Carmeliet, J., Cyclist drag in team pursuit: Influence of cyclist sequence, stature, and arm spacing, J. Biomech. Eng., 136, 011005 (2014)
[10] Blocken, B.; Toparlar, Y., A following car influences cyclist drag: CFD simulations and wind tunnel measurements, J. Wind Eng. Ind. Aerodyn., 145, 178-186 (2015)
[11] Blocken, B.; Toparlar, Y.; Andrianne, T., Aerodynamic benefit for a cyclist by a following motorcycle, J. Wind Eng. Ind. Aerodyn., 155, 1-10 (2016)
[12] Barry, N.; Burton, D.; Sheridan, J.; Thompson, M.; Brown, N. A.T., Aerodynamic performance and riding posture in road cycling and triathlon, Proc. Inst. Mech. Eng. P, 229, 28-38 (2015)
[13] Blocken, B.; Van Druenen, T.; Toparlar, Y.; Andrianne, T.; Marchal, T., Numerical analysis of drag of different cyclist positions for hill descent, J. Wind Eng. Ind. Aerodyn., 31, 8595 (2018)
[14] Defraeye, T.; Blocken, B.; Koninckx, E.; Hespel, P.; Carmeliet, J., Aerodynamic study of different cyclist positions: CFD analysis and full-scale wind-tunnel tests, J. Biomech., 43, 1262-1268 (2010)
[15] Oggiano, L.; Leirdal, S.; Sætran, L.; Ettema, G., Aerodynamic optimization and energy saving of cycling postures for international elite level cyclists, Eng. Sport, 7, 1, 597-604 (2008)
[16] Underwood, L.; Jermy, M., Optimal handlebar position for track cyclists, Sport. Eng., 16, 81-90 (2013)
[17] Fintelman, D. M.; Sterling, M.; Hemida, H.; Li, F.-X., Optimal cycling time trial position models: Aerodynamics versus power output and metabolic energy, J. Biomech., 47, 1894-1898 (2014)
[18] Fintelman, D. M.; Sterling, M.; Hemida, H.; Li, F.-X., The effect of time trial cycling position on physiological and aerodynamic variables, J. Sports Sci., 0414, 1-8 (2015)
[19] Crouch, T.; Sheridan, J.; Burton, D.; Thompson, M.; Brown, N. A.T., A quasi-static investigation of the effect of leg position on cyclist aerodynamic drag, Procedia Eng., 34, 3-8 (2012)
[20] Griffith, M. D.; Crouch, T.; Thompson, M. C.; Burton, D.; Sheridan, J., Computational fluid dynamics study of the effect of leg position on cyclist aerodynamic drag, Am. Soc. Mech. Eng. J. Fluids Eng., 136 (2014)
[21] Mannion, P.; Toparlar, Y.; Blocken, B.; Hajdukiewicz, M.; Andrianne, T.; Clifford, E., Improving CFD prediction of drag on Paralympic tandem athletes: Influence of grid resolution and turbulence model, Sport. Eng., 21, 123-135 (2018)
[22] Mannion, P.; Toparlar, Y.; Blocken, B.; Clifford, E.; Andrianne, T.; Hajdukiewicz, M., Aerodynamic drag in competitive tandem para-cycling: road race versus time-trial positions, J. Wind Eng. Ind. Aerodyn., 179, 92-101 (2018)
[23] Mannion, P.; Toparlar, Y.; Clifford, E.; Hajdukiewicz, M.; Andrianne, T.; Blocken, B., On the effects of crosswinds in tandem aerodynamics: An experimental and computational study, Eur. J. Mech. B/Fluids., 74, 68-80 (2019)
[24] Mazzola, M.; Andreoni, G.; Campanardi, G.; Costa, F.; Gibertini, G.; Grassi, D.; Romero, M., Effects of seat and handgrips adjustments on a Hand Bike vehicle. an ergonomic and aerodynamic study for a quantitative assessment of Paralympics athleteśs performance, Adv. Usability Eval. I., 7167-7174 (2012)
[25] Belloli, M.; Cheli, F.; Bayati, I.; Giappino, S.; Robustelli, F., Handbike aerodynamics: wind tunnel versus track tests, (2014 Conf. Int. Sport. Eng. Assoc. Procedia Eng. (2014), Elsevier B.V.), 750-755
[26] Mannion, P.; Toparlar, Y.; Blocken, B.; Clifford, E.; Andrianne, T.; Hajdukiewicz, M., Analysis of crosswind aerodynamics for competitive hand-cycling, J. Wind Eng. Ind. Aerodyn., 180, 182-190 (2018)
[27] Godo, M.; Corson, D.; Legensky, S., A comparative aerodynamic study of commercial bicycle wheels using CFD, (48th AIAA Aerosp. Sci. Meet (2010))
[28] Artec Europe, Artec Eva, 3D Scanners, (2017). https://www.artec3d.com/3d-scanner/artec-eva; Artec Europe, Artec Eva, 3D Scanners, (2017). https://www.artec3d.com/3d-scanner/artec-eva
[29] Godo, M.; Corson, D.; Legensky, S., An aerodynamic study of bicycle wheel performance using CFD, (47th AIAA Aerosp. Sci. Annu. Meet (2009), AIAA: AIAA Orlando, Florida)
[30] Sapim, CX-RAY \(|\) http://www.sapim.be/spokes/aero/cx-ray; Sapim, CX-RAY \(|\) http://www.sapim.be/spokes/aero/cx-ray
[31] Blocken, B., Computational fluid dynamics for urban physics: Importance, scales, possibilities, limitations and ten tips and tricks towards accurate and reliable simulations, Build. Environ., 91, 219-245 (2015)
[32] M. Casey, T. Wintergerste, Best Practice Guidelines, ERCOFTAC Spec. Interes. Gr. Quality Trust Ind. CFD. (2000).; M. Casey, T. Wintergerste, Best Practice Guidelines, ERCOFTAC Spec. Interes. Gr. Quality Trust Ind. CFD. (2000).
[33] Franke, J.; Hellsten, A.; Schlünzen, H.; Carissimo, B., The best practise guideline for the CFD simulation of flows in the urban environment: an outcome of COST 732, (Fifth Int. Symp. Comput. Wind Eng. (2010)), 1-10
[34] Tominaga, Y.; Mochida, A.; Yoshie, R.; Kataoka, H.; Nozu, T.; Yoshikawa, M.; Shirasawa, T., AIJ Guidelines for practical applications of CFD to pedestrian wind environment around buildings, J. Wind Eng. Ind. Aerodyn., 96, 1749-1761 (2008)
[35] ANSYS Fluent, ANSYS Fluent Theory Guide, Release 18.2 Doc. 18.2 (2017).; ANSYS Fluent, ANSYS Fluent Theory Guide, Release 18.2 Doc. 18.2 (2017).
[36] Menter, F. R., Two-equation eddy-viscosity turbulence models for engineering applications, AIAA J., 32, 1598-1605 (1994)
[37] Roache, P. J., Quantification of uncertainty in computational fluid dynamics, Annu. Rev. Fluid Mech., 29, 123-160 (1997)
[38] Roache, P. J., Perspective: A method for uniform reporting of grid refinement studies, J. Fluids Eng., 116, 405-413 (1994)
[39] A.I. Automation, F/T Sensor Delta, (2018). www.ati-ia.com/app_content/Documents/9230-05-1330.auto.pdf; A.I. Automation, F/T Sensor Delta, (2018). www.ati-ia.com/app_content/Documents/9230-05-1330.auto.pdf
[40] Barlow, J. B.; Rae, W. H.; Pope, A., Low-Speed Wind Tunnel Testing (1999), John Wiley & Sons
[41] Fintelman, D. M.; Hemida, H.; Sterling, M.; Li, F.-X., CFD Simulations of the flow around a cyclist subjected to crosswinds, J. Wind Eng. Ind. Aerodyn., 144, 31-41 (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.