Adly, S.; Nacry, F. An existence result for discontinuous second-order nonconvex state-dependent sweeping processes. (English) Zbl 1421.34041 Appl. Math. Optim. 79, No. 2, 515-546 (2019). Reviewer: Daniel C. Biles (Nashville) MSC: 34G25 49J52 49J53 PDF BibTeX XML Cite \textit{S. Adly} and \textit{F. Nacry}, Appl. Math. Optim. 79, No. 2, 515--546 (2019; Zbl 1421.34041) Full Text: DOI
Azimzadeh, Parsiad A zero-sum stochastic differential game with impulses, precommitment, and unrestricted cost functions. (English) Zbl 1417.49051 Appl. Math. Optim. 79, No. 2, 483-514 (2019). MSC: 49N70 49L20 49L25 91A23 91A15 49J55 49J40 PDF BibTeX XML Cite \textit{P. Azimzadeh}, Appl. Math. Optim. 79, No. 2, 483--514 (2019; Zbl 1417.49051) Full Text: DOI
Calvez, Vincent; Gallouët, Thomas O. Blow-up phenomena for gradient flows of discrete homogeneous functionals. (English) Zbl 1415.35161 Appl. Math. Optim. 79, No. 2, 453-481 (2019). Reviewer: Dian K. Palagachev (Bari) MSC: 35K57 35B44 35K55 35B40 65L05 PDF BibTeX XML Cite \textit{V. Calvez} and \textit{T. O. Gallouët}, Appl. Math. Optim. 79, No. 2, 453--481 (2019; Zbl 1415.35161) Full Text: DOI
McEneaney, William M. A stochastic control verification theorem for the dequantized Schrödinger equation not requiring a duration restriction. (English) Zbl 1420.35280 Appl. Math. Optim. 79, No. 2, 427-452 (2019). MSC: 35Q41 60J60 93E20 35Q93 49L20 30D20 PDF BibTeX XML Cite \textit{W. M. McEneaney}, Appl. Math. Optim. 79, No. 2, 427--452 (2019; Zbl 1420.35280) Full Text: DOI
Anh, Cung The; Nguyet, Tran Minh Time optimal control of the unsteady 3D Navier-Stokes-Voigt equations. (English) Zbl 1415.76217 Appl. Math. Optim. 79, No. 2, 397-426 (2019). MSC: 76D55 35Q35 49J20 49K20 PDF BibTeX XML Cite \textit{C. T. Anh} and \textit{T. M. Nguyet}, Appl. Math. Optim. 79, No. 2, 397--426 (2019; Zbl 1415.76217) Full Text: DOI
Agarwal, Pooja; Manna, Utpal; Mukherjee, Debopriya Stochastic control of tidal dynamics equation with Lévy noise. (English) Zbl 1420.35220 Appl. Math. Optim. 79, No. 2, 327-396 (2019). MSC: 35Q35 60H15 76D03 76D55 35D35 35A01 35A02 35B65 93E20 PDF BibTeX XML Cite \textit{P. Agarwal} et al., Appl. Math. Optim. 79, No. 2, 327--396 (2019; Zbl 1420.35220) Full Text: DOI arXiv
Fernández, Jose R.; Magaña, Antonio; Masid, María; Quintanilla, Ramón On the viscoelastic mixtures of solids. (English) Zbl 1415.74018 Appl. Math. Optim. 79, No. 2, 309-326 (2019). MSC: 74E30 74D05 PDF BibTeX XML Cite \textit{J. R. Fernández} et al., Appl. Math. Optim. 79, No. 2, 309--326 (2019; Zbl 1415.74018) Full Text: DOI
Huy, Nguyen Quang; Kim, Do Sang; Tuyen, Nguyen Van New second-order Karush-Kuhn-Tucker optimality conditions for vector optimization. (English) Zbl 1417.49029 Appl. Math. Optim. 79, No. 2, 279-307 (2019). MSC: 49K30 49J52 49J53 90C29 90C46 PDF BibTeX XML Cite \textit{N. Q. Huy} et al., Appl. Math. Optim. 79, No. 2, 279--307 (2019; Zbl 1417.49029) Full Text: DOI
Liu, Zhenhai; Migórski, Stanisław; Zeng, Biao Existence results and optimal control for a class of quasi mixed equilibrium problems involving the \((f,g,h)\)-quasimonotonicity. (English) Zbl 1415.74043 Appl. Math. Optim. 79, No. 2, 257-277 (2019). MSC: 74Q05 90C33 91B50 PDF BibTeX XML Cite \textit{Z. Liu} et al., Appl. Math. Optim. 79, No. 2, 257--277 (2019; Zbl 1415.74043) Full Text: DOI
Liu, Rong; Liu, Guirong Optimal contraception control for a nonlinear vermin population model with size-structure. (English) Zbl 1417.49024 Appl. Math. Optim. 79, No. 2, 231-256 (2019). MSC: 49K20 49K15 35F50 92D25 PDF BibTeX XML Cite \textit{R. Liu} and \textit{G. Liu}, Appl. Math. Optim. 79, No. 2, 231--256 (2019; Zbl 1417.49024) Full Text: DOI