Saito, Takeshi Correction to: “The characteristic cycle and the singular support of a constructible sheaf”. (English) Zbl 1440.14029 Invent. Math. 216, No. 3, 1005-1006 (2019). MSC: 14C17 14F20 14F06 PDF BibTeX XML Cite \textit{T. Saito}, Invent. Math. 216, No. 3, 1005--1006 (2019; Zbl 1440.14029) Full Text: DOI
Rizzardo, Alice; Van den Bergh, Michel; Neeman, Amnon An example of a non-Fourier-Mukai functor between derived categories of coherent sheaves. (English) Zbl 07066471 Invent. Math. 216, No. 3, 927-1004 (2019). MSC: 13D09 18E30 14A22 PDF BibTeX XML Cite \textit{A. Rizzardo} et al., Invent. Math. 216, No. 3, 927--1004 (2019; Zbl 07066471) Full Text: DOI arXiv
Naber, Aaron; Valtorta, Daniele Energy identity for stationary Yang Mills. (English) Zbl 07066470 Invent. Math. 216, No. 3, 847-925 (2019). MSC: 53C07 58E15 81T13 PDF BibTeX XML Cite \textit{A. Naber} and \textit{D. Valtorta}, Invent. Math. 216, No. 3, 847--925 (2019; Zbl 07066470) Full Text: DOI
Schrader, Gus; Shapiro, Alexander A cluster realization of \(U_q(\mathfrak {sl}_{\mathfrak {n}})\) from quantum character varieties. (English) Zbl 1451.17006 Invent. Math. 216, No. 3, 799-846 (2019). Reviewer: Volodymyr Mazorchuk (Uppsala) MSC: 17B37 13F60 14M35 PDF BibTeX XML Cite \textit{G. Schrader} and \textit{A. Shapiro}, Invent. Math. 216, No. 3, 799--846 (2019; Zbl 1451.17006) Full Text: DOI
Pop, Florian Finite tripod variants of I/OM. On Ihara’s question/Oda-Matsumoto conjecture. (English) Zbl 07066468 Invent. Math. 216, No. 3, 745-797 (2019). MSC: 11G99 12F10 12G99 14A99 PDF BibTeX XML Cite \textit{F. Pop}, Invent. Math. 216, No. 3, 745--797 (2019; Zbl 07066468) Full Text: DOI
Aizenman, Michael; Duminil-Copin, Hugo; Tassion, Vincent; Warzel, Simone Emergent planarity in two-dimensional Ising models with finite-range interactions. (English) Zbl 1417.82022 Invent. Math. 216, No. 3, 661-743 (2019). MSC: 82C20 82C22 82C44 58A17 PDF BibTeX XML Cite \textit{M. Aizenman} et al., Invent. Math. 216, No. 3, 661--743 (2019; Zbl 1417.82022) Full Text: DOI
Bárány, Balázs; Hochman, Michael; Rapaport, Ariel Hausdorff dimension of planar self-affine sets and measures. (English) Zbl 1414.28014 Invent. Math. 216, No. 3, 601-659 (2019). Reviewer: George Stoica (Saint John) MSC: 28A80 37C45 37F35 PDF BibTeX XML Cite \textit{B. Bárány} et al., Invent. Math. 216, No. 3, 601--659 (2019; Zbl 1414.28014) Full Text: DOI arXiv