×

Inclined slow acoustic waves incident to stagnation point probes in supersonic flow. (English) Zbl 1415.76425

Summary: Tunnel noise in supersonic testing facilities is known to be a decisive factor in boundary layer transition experiments. It defines initial conditions for the growth of modal instabilities by the receptivity mechanism. That is, to interpret experimental results, the determination of tunnel noise is of crucial importance. It is common to use stagnation point probes equipped with pressure transducers in supersonic flows, but since tunnel noise undergoes modulation during the measurement, the probes must be calibrated. The predominant component of tunnel noise is caused by the nozzle boundary layer which radiates highly inclined slow acoustic waves. Therefore, the calibration of stagnation point probes for these disturbances is essential. For quasi-steady deviations from the free stream, an analytic reduced-order method holds. A corresponding conflicting model derived by P. C. Stainback and R. D. Wagner [“A comparison of disturbance levels measured in hypersonic tunnels using a hot-wire anemometer and a pitot pressure probe”, in: Proceedings of the 7th aerodynamic testing conference, Palo Alto, California, 13–15 September. New York, NY: American Institute of Aeronautics and Astronautics. Paper No. 72-1003 (1972)] is revised and corrected. Inclined slow acoustic waves generate higher pressure perturbations at the probe than non-inclined waves. In general, costly three-dimensional direct numerical simulations can be used for calibration. In this study, however, new axisymmetric boundary conditions are proposed to reduce the problem to two dimensions to efficiently investigate the detection of incident inclined slow acoustic waves by stagnation point probes. A cylindrical probe with a rounded edge is investigated in supersonic flow at a Mach number \(Ma=5.9\). For the inclination angle of radiated slow acoustic waves, stagnation point pressure fluctuations abruptly decay with increasing Strouhal number and a similar behaviour can be seen at constant Strouhal number with increasing inclination angle. Two simple criteria for the onset of decay based on the radial wavenumber are deduced. Furthermore, stagnation point pressure fluctuations were decomposed into an initial pulse impact and resonant amplification to separately investigate the effects. The initial pulse determines the overall pressure signal. At high inclination angles, a new mechanism for resonance caused by a surface pressure wave travelling at the phase speed of the incident wave was found to supersede resonance caused by oscillating acoustic waves prevailing at low inclination angles.

MSC:

76J20 Supersonic flows
76Q05 Hydro- and aero-acoustics
76N15 Gas dynamics (general theory)
76N20 Boundary-layer theory for compressible fluids and gas dynamics
76L05 Shock waves and blast waves in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Ali, S. R. C., Zárate Cárdenas, R., Radespiel, R., Schilden, T. & Schröder, W.2018Stagnation point probes in hypersonic flow. In New Results in Numerical and Experimental Fluid Mechanics XI, Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 136, pp. 117-127. Springer.
[2] Bouslog, S. A., An, M. Y., Hartmann, L. N. & Derry, S. M.1991 Review of boundary layer transition flight data on the space shuttle orbiter. AIAA Paper 91-0741.
[3] Chaudhry, R. S. & Candler, G. V.2017Computing measured spectra from hypersonic pitot probes with flow-parallel freestream disturbances. AIAA J.55 (12), 4155-4166.10.2514/1.J055396 · doi:10.2514/1.J055396
[4] Duan, L. & Choudhari, M. M.2013 Numerical study of pressure fluctuations due to a mach 6 turbulent boundary layer. AIAA Paper 2013-0532.
[5] Duan, L., Choudhari, M. M., Chou, A., Muñoz, F., Ali, S. R. C., Radespiel, R., Schilden, T., Schröder, W., Marineau, E. C., Casper, K. M. 2018 Characterization of freestream disturbances in conventional hypersonic wind tunnels. AIAA Paper 2018-0347.
[6] Duan, L., Choudhari, M. M. & Wu, M.2014Numerical study of acoustic radiation due to a supersonic turbulent boundary layer. J. Fluid Mech.746, 165-192.10.1017/jfm.2014.116 · doi:10.1017/jfm.2014.116
[7] Fedorov, A. V.2003Receptivity of a high-speed boundary layer to acoustic disturbances. J. Fluid Mech.491, 101-129.10.1017/S0022112003005263S0022112003005263 · Zbl 1063.76552 · doi:10.1017/S0022112003005263
[8] Fedorov, A. V.2011Transition and stability of high-speed boundary layers. Annu. Rev. Fluid. Mech.43, 79-95.10.1146/annurev-fluid-122109-160750 · Zbl 1299.76054 · doi:10.1146/annurev-fluid-122109-160750
[9] Fedorov, A. V., Ryzhov, A. A., Soudakov, V. G. & Utyuzhnikov, S. V.2013Receptivity of a high-speed boundary layer to temperature spottiness. J. Fluid Mech.722, 533-553.10.1017/jfm.2013.111S0022112013001110 · Zbl 1287.76189 · doi:10.1017/jfm.2013.111
[10] Hartmann, D., Meinke, M. & Schröder, W.2008An adaptive multilevel multigrid formulation for cartesian hierarchical grid methods. Comput. Fluids37, 1103-1125.10.1016/j.compfluid.2007.06.007 · Zbl 1237.76085 · doi:10.1016/j.compfluid.2007.06.007
[11] Hein, S., Theiss, A., Di Giovanni, A., Schilden, T., Schröder, W., Paredes, P., Choudhari, M. M., Li, F. & Reshotko, E.2018 Numerical investigation of roughness effects on transition on spherical capsules. AIAA Paper 2018-0058.
[12] Huang, J., Zhang, C., Duan, L. & Choudhari, M. M.2017 Direct numerical simulation of hypersonic turbulent boundary layers inside an axisymmetric nozzle. AIAA Paper 2017-0067.
[13] Khan, M. M. S. & Reshotko, E.1980Stability of the laminar boundary layer on a blunted plate in supersonic flow. In Laminar-Turbulent Transition (ed. R.Eppler & H.Fasel), pp. 186-200. Springer. · Zbl 0465.76033
[14] Kovasznay, L. S. G.1953 Turbulence in supersonic flow. AIAA Paper 53-682. · Zbl 0051.42201
[15] Laufer, J.1961Aerodynamic noise in supersonic wind tunnels. J. Aero. Sci.28 (9), 658-692.10.2514/8.9122 · Zbl 0095.21001 · doi:10.2514/8.9122
[16] Laufer, J.1964Some statistical properties of the pressure field radiated by a turbulent boundary layer. Phys. Fluids7, 1191-1197.10.1063/1.1711360 · Zbl 0126.22303 · doi:10.1063/1.1711360
[17] Lin, T. C., Grabowsky, W. R. & Yelmgren, K. E.1984The search for optimum configurations for re-entry vehicles. J. Spacecr. Rockets21 (2), 142-149.10.2514/3.8625 · doi:10.2514/3.8625
[18] Lintermann, A., Schlimpert, S., Grimmen, J. H., Günther, C., Meinke, M. & Schröder, W.2014Massively parallel grid generation on HPC systems. Comput. Meth. Appl. Mech. Engng277, 131-153.10.1016/j.cma.2014.04.009 · Zbl 1423.76366 · doi:10.1016/j.cma.2014.04.009
[19] Logan, P.1988 Modal analysis of hot-wire measurements in supersonic turbulence. AIAA Paper 88-0423.
[20] Ma, Y. & Zhong, X.2003aReceptivity of a supersonic boundary layer over a flat plate. Part 1. Wave structures and interactions. J. Fluid Mech.488, 31-78.10.1017/S0022112003004786S0022112003004786 · Zbl 1063.76544 · doi:10.1017/S0022112003004786
[21] Ma, Y. & Zhong, X.2003bReceptivity of a supersonic boundary layer over a flat plate. Part 2. Receptivity to free-stream sound. J. Fluid Mech.488, 79-121.10.1017/S0022112003004798S0022112003004798 · Zbl 1063.76545 · doi:10.1017/S0022112003004798
[22] Ma, Y. & Zhong, X.2005Receptivity of a supersonic boundary layer over a flat plate. Part 3. Effects of different type of free-stream disturbances. J. Fluid Mech.532, 63-109.10.1017/S0022112005003836 · Zbl 1125.76360 · doi:10.1017/S0022112005003836
[23] McKenzie, J. F. & Westphal, K. O.1968Interaction of linear waves with oblique shock waves. Phys. Fluids11, 2350-2362.10.1063/1.1691825 · Zbl 0172.53203 · doi:10.1063/1.1691825
[24] Moore, F. K.1954 Unsteady oblique interaction of a shock wave with a plane disturbance. NACA Report No. 1165.
[25] Morkovin, M. V.1960Note on the assesment of flow disturbances at a blunt body traveling at supersonic speeds owing to flow disturbances in free stream. J. Appl. Mech.27 (2), 223-229.10.1115/1.3643942 · Zbl 0106.18101 · doi:10.1115/1.3643942
[26] Pate, S. R.1977 Dominance of radiated aerodynamic noise on boundary-layer transition in supersonic-hypersonic wind tunnels. PhD thesis, Tennessee University.
[27] Pogorelov, A., Meinke, M. & Schröder, W.2015Cut-cell method based large-eddy simulation of tip-leakage flow. Phys. Fluids27, 075106.10.1063/1.4926515 · doi:10.1063/1.4926515
[28] Reshotko, E.1994 Boundary layer instability, transition and control. AIAA Paper 94-0001.
[29] Robinet, J.-Ch. & Casalis, G.2001Critical interaction of a shock wave with an acoustic wave. Phys. Fluids13, 1047-1059.10.1063/1.1351548 · Zbl 1184.76461 · doi:10.1063/1.1351548
[30] Schilden, T. & Schröder, W.2017Numerical analysis of high speed wind tunnel flow disturbance measurements using stagnation point probes. J. Fluid Mech.833, 247-273.10.1017/jfm.2017.674S0022112017006747 · Zbl 1419.76550 · doi:10.1017/jfm.2017.674
[31] Schilden, T., Schröder, W., Ali, S. R. C., Wu, J., Schreyer, A.-M. & Radespiel, R.2016Analysis of acoustic and entropy disturbances in a hypersonic wind tunnel. Phys. Fluids28, 056104.10.1063/1.4948435 · doi:10.1063/1.4948435
[32] Schneider, S. P.2001Effects of high-speed tunnel noise on laminar-turbulent transition. J. Spacecr. Rockets38 (3), 323-333.10.2514/2.3705 · doi:10.2514/2.3705
[33] Schneider, S. P.2008aEffects of roughness on hypersonic bounday-layer transition. J. Spacecr. Rockets45, 193-209.10.2514/1.29713 · doi:10.2514/1.29713
[34] Schneider, S. P.2008bSummary of hypersonic boundary-layer transition experiments on blunt bodies with roughness. J. Spacecr. Rockets6, 1090-1105.10.2514/1.37431 · doi:10.2514/1.37431
[35] Schneiders, L., Günther, C., Meinke, M. & Schröder, W.2016An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows. J. Comput. Phys.311, 62-86.10.1016/j.jcp.2016.01.026 · Zbl 1349.74345 · doi:10.1016/j.jcp.2016.01.026
[36] Stainback, P. C. & Wagner, R. D.1972 A comparison of disturbance levels measured in hypersonic tunnels using a hot-wire anemometer and a pitot pressure probe. AIAA Paper 72-1003.
[37] Wurster, K. E.1981 An assessment of the impact of transition on advanced winged entry vehicle thermal protection system mass. AIAA Paper 81-1090.
[38] Zhang, C. & Duan, L.2015 Acoustic radiation from high-speed turbulent boundary layers in a tunnel-like environment. AIAA Paper 2015-0839.
[39] Zhong, X. & Wang, X.2012Direct numerical simulation on the receptivity, instability, and transition of hypersonic boundary layers. Annu. Rev. Fluid. Mech.44, 527-561.10.1146/annurev-fluid-120710-101208 · Zbl 1366.76043 · doi:10.1146/annurev-fluid-120710-101208
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.