×

Multi-point Monin-Obukhov similarity in the convective atmospheric surface layer using matched asymptotic expansions. (English) Zbl 1415.86030

Summary: The multi-point Monin-Obukhov similarity (MMO) was recently proposed [C. Tong and K. X. Nguyen, “Multipoint Monin-Obukhov similarity and its application to turbulence spectra in the convective atmospheric surface layer”, J. Atmos. Sci. 72, 4337–4348 (2015; doi:10.1175/JAS-D-15-0134.1)] to address the issue of incomplete similarity in the framework of the original Monin-Obukhov similarity theory (MOST). MMO hypothesizes the following: (1) The surface-layer turbulence, defined to consist of eddies that are entirely inside the surface layer, has complete similarity, which however can only be represented by multi-point statistics, requiring a horizontal characteristic length scale (absent in MOST). (2) The Obukhov length \(L\) is also the characteristic horizontal length scale; therefore, all surface-layer multi-point statistics, non-dimensionalized using the surface-layer parameters, depend only on the height and separations between the points, non-dimensionalized using \(L\). However, similar to MOST, MMO was also proposed as a hypothesis based on phenomenology. In this work we derive MMO analytically for the case of the horizontal Fourier transforms of the velocity and potential temperature fluctuations, which are equivalent to the two-point horizontal differences of these variables, using the spectral forms of the Navier-Stokes and the potential temperature equations. We show that, for the large-scale motions (wavenumber \(k<1/z\)) in a convective surface layer, the solution is uniformly valid with respect to \(z\) (i.e. as \(z\) decreases from \(z>-L\) to \(z<-L\)), where \(z\) is the height from the surface. However, for \(z<-L\) the solution is not uniformly valid with respective to \(k\) as it increases from \(k<-1/L\) to \(k>-1/L\), resulting in a singular perturbation problem, which we analyse using the method of matched asymptotic expansions. We show that (1) \(-L\) is the characteristic horizontal length scale, and (2) the Fourier transforms satisfy MMO with the non-dimensional wavenumber \(-kL\) as the independent similarity variable. Two scaling ranges, the convective range and the dynamic range, discovered for \(z\ll -L\) in Tong and Nguyen [loc. cit.] are obtained. We derive the leading-order spectral scaling exponents for the two scaling ranges and the corrections to the scaling ranges for finite ratios of the length scales. The analysis also reveals the dominant dynamics in each scaling range. The analytical derivations of the characteristic horizontal length scale \((L)\) and the validity of MMO for the case of two-point horizontal separations provide strong support to MMO for general multi-point velocity and temperature differences.

MSC:

86A10 Meteorology and atmospheric physics
76B60 Atmospheric waves (MSC2010)
76F40 Turbulent boundary layers
76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bender, C. M. & Orszag, S. A.1978Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill. · Zbl 0417.34001
[2] Betchov, R. & Yaglom, A. M.1971Comments on the theory of similarity as applied to turbulence in an unstable stratified fluid. Izv. Akad. Nauk. Ser. Fiz. Atmos. Okeana7, 829-832; English translation.
[3] Businger, J. A.1973A note on free convection. Boundary-Layer Meteorol.4, 323-326.10.1007/BF02265241 · doi:10.1007/BF02265241
[4] Businger, J. A., Wyngaard, J. C., Izumi, Y. & Bradley, E. F.1971Flux-profile relationships in the atmospheric surface layer. J. Atmos. Sci.28, 181-189.10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2 · doi:10.1175/1520-0469(1971)028<0181:FPRITA>2.0.CO;2
[5] Caughey, S. J. & Palmer, S. G.1979Some aspects of turbulence structure through the depth of the convective boundary layer. Q. J. R. Meteorol. Soc.105, 811-827.10.1002/qj.49710544606 · doi:10.1002/qj.49710544606
[6] Cousteix, J. & Mauss, J.2007Asymptotic Analysis and Boundary Layers. Springer. · Zbl 1115.41029
[7] Ding, M., Nguyen, K. X., Liu, S., Otte, M. J. & Tong, C.2018Investigation of the pressure – strain-rate correlation and pressure fluctuations in convective and near neutral atmospheric surface layers. J. Fluid Mech.854, 88-120.10.1017/jfm.2018.576S0022112018005761 · Zbl 1415.86027 · doi:10.1017/jfm.2018.576
[8] Grachev, A. A. W., Fairall, C. & Zilitinkevich, S. S.1997Surface-layer scaling for the convection induced stress regime. Boundary-Layer Meteorol.83, 423-439.10.1023/A:1000281625985 · doi:10.1023/A:1000281625985
[9] Kader, B. A.1988Three-layer structure of an unstably stratified atmospheric surface layer. Izv. Akad. Nauk. Ser. Fiz. Atmos. Okeana24, 907-918; English translation.
[10] Kaimal, J. C.1978Horizontal velocity spectra in an unstable surface layer. J. Atmos. Sci.35, 18-24.10.1175/1520-0469(1978)035<0018:HVSIAU>2.0.CO;2 · doi:10.1175/1520-0469(1978)035<0018:HVSIAU>2.0.CO;2
[11] Kaimal, J. C., Wyngaard, J. C., Izumi, Y. & Coté, O. R.1972Spectral characteristic of surface-layer turbulence. Q. J. R. Meteorol. Soc.98, 563-589.10.1002/qj.49709841707 · doi:10.1002/qj.49709841707
[12] Kosović, B.1997Subgrid-scale modelling for the large-eddy simulation of high-Reynolds-number boundary layer.. J. Fluid Mech.336, 151-182.10.1017/S0022112096004697 · Zbl 0943.76043 · doi:10.1017/S0022112096004697
[13] Lumley, J. L. & Panofsky, H. A.1964The Structure of Atmospheric Turbulence, Interscience Monographs and Texts in Physics and Astronomy, vol. 12. Interscience.
[14] Lundgren, T. S.2003Kolmogorov turbulence by matched asymptotic expansions. Phys. Fluids15, 1074-1081.10.1063/1.1558332 · Zbl 1186.76341 · doi:10.1063/1.1558332
[15] Moeng, C.-H.1984A large-eddy simulation model for the study of planetary boundary-layer turbulence. J. Atmos. Sci.41, 2052-2062.10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2 · doi:10.1175/1520-0469(1984)041<2052:ALESMF>2.0.CO;2
[16] Moeng, C. H. & Wyngaard, J. C.1988Spectral analysis of large-eddy simulations of the convective boundary layer. J. Atmos. Sci.45, 3573-3587.10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2 · doi:10.1175/1520-0469(1988)045<3573:SAOLES>2.0.CO;2
[17] Monin, A. S. & Obukhov, A. M.1954Basic laws of turbulent mixing in the ground layer of the atmosphere. Trans. Inst. Teoret. Geofiz. Akad. Nauk SSSR151, 163-187.
[18] Monin, A. S. & Yaglom, A. M.1975Statistical Fluid Mechanics. MIT Press.
[19] Nguyen, K. X., Horst, T. W., Oncley, S. P. & Tong, C.2013Measurements of the budgets of the subgrid-scale stress and temperature flux in a convective atmospheric surface layer. J. Fluid Mech.729, 388-422.10.1017/jfm.2013.302S0022112013003029 · Zbl 1291.76018 · doi:10.1017/jfm.2013.302
[20] Nguyen, K. X. & Tong, C.2015Investigation of subgrid-scale physics in the convective atmospheric surface layer using the budgets of the conditional mean subgrid-scale stress and temperature flux. J. Fluid Mech.772, 295-329.10.1017/jfm.2015.171S0022112015001718 · doi:10.1017/jfm.2015.171
[21] Obukhov, A. M.1946Turbulence in the atmosphere with inhomogeneous temperature. Trans. Inst. Teoret. Geofiz. Akad. Nauk SSSR1, 95-115.
[22] Otte, M. J. & Wyngaard, J. C.2001Stably stratified interfacial-layer turbulence from large-eddy simulation. J. Atmos. Sci.58, 3424-3442.10.1175/1520-0469(2001)058<3424:SSILTF>2.0.CO;2 · doi:10.1175/1520-0469(2001)058<3424:SSILTF>2.0.CO;2
[23] Sullivan, P. P., McWilliams, J. C. & Moeng, C.-H.1994A subgrid-scale model for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol.71, 247-276.10.1007/BF00713741 · doi:10.1007/BF00713741
[24] Sullivan, P. P., Mcwilliams, J. C. & Moeng, C.-H.1996A grid nesting method for large-eddy simulation of planetary boundary-layer flows. Boundary-Layer Meteorol.80, 167-202.10.1007/BF00119016 · doi:10.1007/BF00119016
[25] Sykes, R. I., Henn, D. S. & Lewellen, W. S.1993Surface-layer description under free-convection conditions. Q. J. R. Meteorol. Soc.119, 409-421.10.1002/qj.49711951103 · doi:10.1002/qj.49711951103
[26] Tong, C. & Ding, M.2018Monin-Obukhov similarity and local-free-convection scaling in the atmospheric boundary layer using matched asymptotic expansions. J. Atmos. Sci.75, 3691-3701.10.1175/JAS-D-18-0016.1 · doi:10.1175/JAS-D-18-0016.1
[27] Tong, C. & Nguyen, K. X.2015Multipoint Monin-Obukhov similarity and its application to turbulence spectra in the convective atmospheric surface layer. J. Atmos. Sci.72, 4337-4348.10.1175/JAS-D-15-0134.1 · doi:10.1175/JAS-D-15-0134.1
[28] Van Dyke, M.1975Perturbation Methods in Fluid Mechanics. The Parabolic Press. · Zbl 0329.76002
[29] Wyngaard, J. C. & Coté, O. R.1971The budgets of turbulent kinetic energy and temperature variance in the atmospheric surface layer. J. Atmos. Sci.28, 190-201.10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2 · doi:10.1175/1520-0469(1971)028<0190:TBOTKE>2.0.CO;2
[30] Wyngaard, J. C., Coté, O. R. & Izumi, Y.1971Local free convection, similarity, and the budgets of shear stress and heat flux. J. Atmos. Sci.28, 1171-1182.10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2 · doi:10.1175/1520-0469(1971)028<1171:LFCSAT>2.0.CO;2
[31] Yaglom, A. M.1994Fluctuation spectra and variances in convective turbulent boundary layers: a reevaluation of old models. Phys. Fluids6, 962-972.10.1063/1.868328 · Zbl 0836.76042 · doi:10.1063/1.868328
[32] Zilitinkevich, S. S.1971On the turbulence and diffusion under free convection conditions. Izv. Akad. Nauk. Ser. Fiz. Atmos. Okeana7, 1263-1269.
[33] Zilitinkevich, S. S., Hunt, J. C. R., Esau, I. N., Grachev, A. A., Lalas, D. P., Akylas, E., Tombrou, M., Fairall, C. W., Fernando, H. J. S., Baklanov, A. A. & Joffre, S. M.2006The influence of large convective eddies on the surface-layer turbulence. Q. J. R. Meteorol. Soc.132, 1423-1456.10.1256/qj.05.79 · doi:10.1256/qj.05.79
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.