×

zbMATH — the first resource for mathematics

Analytic twists of modular forms. (English) Zbl 1440.11067
Summary: We investigate non-correlation of Fourier coefficients of Maass forms against a class of real oscillatory functions, in analogy to known results for Frobenius trace functions. We also establish an equidistribution result for twisted horocycles as a consequence of our non-correlation result.

MSC:
11F30 Fourier coefficients of automorphic forms
11L05 Gauss and Kloosterman sums; generalizations
11L07 Estimates on exponential sums
PDF BibTeX XML Cite
Full Text: DOI arXiv
References:
[1] A. Erdélyi, W. Magnus, F. Oberhettinger, and F. G. Tricomi, Tables of Integral Transforms. Vol. I, McGraw-Hill, New York, 1954. [4] É. Fouvry and S. Ganguly, Strong orthogonality between the Möbius function, additive characters and Fourier coefficients of cusp forms, Compos. Math. 150 (2014), 763- 797. [5] É. Fouvry, E. Kowalski, and P. Michel, Algebraic twists of modular forms and Hecke orbits, Geom. Funct. Anal. 25 (2015), 580-657. [6] B. Hough, The angle of large values of L-functions, J. Number Theory 167 (2016), 353-393. [7] H. Iwaniec, Spectral Methods of Automorphic Forms, 2nd ed., Grad. Stud. Math. 53, Amer. Math. Soc., Providence, RI, 2002. [8] H. Iwaniec and E. Kowalski, Analytic Number Theory, Amer. Math. Soc. Colloq. Publ. 53, Amer. Math. Soc., Providence, RI, 2004.
[2] M. Jutila, Lectures on a Method in the Theory of Exponential Sums, Tata Inst. Fund. Res. Lectures Math. Phys. 80, Springer, Berlin, 1987. [10] E. Kowalski, P. Michel, and J. VanderKam, Rankin-Selberg L-functions in the level aspect, Duke Math. J. 114 (2002), 123-191. [11] R. Munshi, The circle method and bounds for L-functions—III: t-aspect subconvexity for GL(3) L-functions, J. Amer. Math. Soc. 28 (2015), 913-938.
[3] A. Peyrot, Large values of Hecke-Maass L-functions with prescribed argument, arXiv: 1611.09679 (2016).
[4] Z. Qi, Theory of Bessel functions of high rank- I: Fundamental Bessel functions, arXiv:1408.5652v4 (2016). [14] B. R. Srinivasan, The lattice point problem of many dimensional hyperboloids. III, Math. Ann. 160 (1965), 280-311.
[5] E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Math. Ser. 43, Princeton Univ. Press, Princeton, NJ, 1993. [16] A. Strömbergsson, On the uniform equidistribution of long closed horocycles, Duke Math. J. 123 (2004), 507-547. [17] E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, Cambridge Math. Library, Cambridge Univ. Press, Cambridge, 1996 (reprint of the 4th (1927) ed.).
[6] D. Zagier, Eisenstein series and the Riemann zeta function, in: Automorphic Forms, Representation Theory and Arithmetic (Bombay, 1979), Tata Inst. Fund. Res. Stud. Math. 10, Tata Inst. Fund. Res., Bombay, 1981, 275-301. Alexandre Peyrot EPFL, SB MATHGEOM TAN CH-1015 Lausanne, Switzerland E-mail: alpeyrot@stanford.edu
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.