×

Highly efficient computation of finite-time Lyapunov exponents (FTLE) on GPUs based on three-dimensional SPH datasets. (English) Zbl 1410.76349

Summary: “Smoothed particle hydrodynamics” (SPH) is a particle method that becomes increasingly popular in different fields of science and engineering. Reason for the popularity are the different advantages in comparison to conventional grid-based computational fluid dynamics (CFD). One example is the much cheaper identification of “Lagrangian coherent structures” (LCS) in fluid flows by means of the “finite-time Lyapunov exponent” (FTLE). Schemes for the evaluation of FTLE fields based on SPH datasets already exist. Despite the smaller computational effort required in case of SPH data, their evaluation is still costly. This may be the reason that no investigations have been published presently which address the application of existing schemes to SPH-data in 3-D. Therefore in the current paper, a new and highly efficient GPU implementation of an existing scheme for the evaluation of FTLE fields is proposed that enables the interactive analysis of large SPH datasets. The suitability of the scheme in case of 3-D datasets and the computational efficiency of the novel GPU implementation are demonstrated. Furthemore, the so called particle birthtime is presented as a cheap alternative to FTLE fields, even though it has a variety of limitations compared to FTLE fields.

MSC:

76M28 Particle methods and lattice-gas methods
65M75 Probabilistic methods, particle methods, etc. for initial value and initial-boundary value problems involving PDEs
65Y10 Numerical algorithms for specific classes of architectures
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

CUDA; SPHysics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lucy, L., A numerical approach to the testing of the fission hypothesis, Astron J, 82, 1013-1024, (1977)
[2] Monaghan, J., Simulating free surface flows with sph, J Comput Phys, 110, 2, 399-406, (1994) · Zbl 0794.76073
[3] Koch, R.; Braun, S.; Wieth, L.; Chaussonnet, G.; Dauch, T.; Bauer, H.-J., Prediction of primary atomization using smoothed particle hydrodynamics, Eur J Mech B Fluids, 61, Part 2, 271-278, (2017) · Zbl 1408.76415
[4] Hu, H.; Eberhard, P., Thermomechanically coupled conduction mode laser welding simulations using smoothed particle hydrodynamics, Comput Particle Mech, 4, 4, 473-486, (2017)
[5] Gomez-Gesteira, M.; Rogers, B.; Crespo, A.; Dalrymple, R.; Narayanaswamy, M.; Dominguez, J., Sphysics development of a free-surface fluid solver part 1: theory and formulations, Comput Geosci, 48, 289-299, (2012)
[6] Keller, M.; Braun, S.; Wieth, L.; Chaussonnet, G.; Dauch, T.; Koch, R., Smoothed particle hydrodynamics simulation of oil-jet gear interaction, Proceedings of ASME turbo expo 2017: turbine technical conference and exposition, Charlotte, North Carolina, USA, GT2017-63594, (2017)
[7] Dauch, T.; Braun, S.; Wieth, L.; Chaussonnet, G.; Keller, M.; Koch, R., Computation of liquid fuel atomization and mixing by means of the sph method: application to a jet engine fuel nozzle, Proceedings of ASME turbo expo 2016: turbine technical conference and exposition, Seoul, South Korea, GT2016-56023, (2016)
[8] Dauch, T.; Braun, S.; Wieth, L.; Chaussonnet, G.; Keller, M.; Koch, R., Computational prediction of primary breakup in fuel spray nozzles for aero-engine combustors, ILASS Europe, 29th annual conference on liquid atomization and spray systems, Valencia, Spain, (2017)
[9] Wieth, L.; Lieber, C.; Kurz, W.; Braun, S.; Koch, R.; H.-J., B., Numerical modeling of an aero-engine bearing chamber using the meshless smoothed particle hydrodynamics method, Proceedings of ASME turbo expo 2015: turbine technical conference and exposition, Montreal, Canada, GT2015-42316, (2015)
[10] Violeau, D.; Rogers, B. D., Smoothed particle hydrodynamics (sph) for free-surface flows: past, present and future, J Hydr. Res., 54, 1, 1-26, (2016)
[11] Höfler, C.; Koch, R.; Bauer, H.-J., Development of a smoothed particle hydrodynamics code for the numerical prediction of primary atomization of fuel injecting nozzles, Proceedings of the 5th international SPHERIC WORKSHOP, Manchester, United Kingdom, (2010)
[12] Höfler, C.; Braun, S.; Koch, R.; Bauer, H.-J., Modeling spray formation in gas turbines-a new meshless approach, J Eng Gas Turbine Power, 135, 1, 011503, (2012)
[13] Braun, S.; Wieth, L.; Koch, R.; Bauer, H.-J., Influence of trailing edge height on primary atomization: numerical studies applying the smoothed particle hydrodynamics (sph) method, 13th triennial international conference on liquid atomization and spray systems, Tainan. Taiwan, (2015)
[14] Martinez, J.-M.; Chesneau, X.; Zeghmati, B., A new curvature technique calculation for surface tension contribution in plic-vof method, Comput Mech, 37, 2, 182-193, (2006) · Zbl 1107.76057
[15] Haller, G., An objective definition of a vortex, J Fluid Mech, 525, 1-26, (2005) · Zbl 1065.76031
[16] Haller, G., Lagrangian coherent structures, Annu Rev Fluid Mech, 47, 137-162, (2015)
[17] Haller, G., Distinguished material surfaces and coherent structures in three-dimensional fluid flows, Physica D, 149, 4, 248-277, (2001) · Zbl 1015.76077
[18] Garth, C.; Gerhardt, F.; Tricoche, X.; Hans, H., Efficient computation and visualization of coherent structures in fluid flow applications, IEEE Trans Vis Comput Graph, 13, 6, 1464-1471, (2007)
[19] Sadlo, F.; Peikert, R., Efficient visualization of Lagrangian coherent structures by filtered amr ridge extraction, IEEE Trans Vis Comput Graph, 13, 6, 1456-1463, (2007)
[20] Conti, C.; Rossinelli, D.; Koumoutsakos, P., Gpu and apu computations of finite time Lyapunov exponent fields, J Comput Phys, 231, 5, 2229-2244, (2012) · Zbl 1426.76524
[21] Robinson, M.; Cleary, P.; Monaghan, J., Analysis of mixing in a twin Cam mixer using smoothed particle hydrodynamics, AlChE J, 54, 8, 1987-1998, (2008)
[22] Ricardo, A.; Canelas, R.; Ferreira, R., Characterization of vortex interaction with Lagrangian coherent structures, (Constantinescu, G.; Garcia, M.; Hanes, D., River Flow 2016. Proceedings of the international conference on fluival hydraulics, (2016), CRC Press), 135-141
[23] Sun, P.; Colagrossi, A.; Marrone, S.; Zhang, A., Detection of Lagrangian coherent structures in the sph framework, Comput Methods Appl Mech Eng, 305, 849-868, (2016)
[24] Jeong, J.; Hussain, F., On the identification of a vortex, J Fluid Mech, 285, 69-94, (1995) · Zbl 0847.76007
[25] Hunt, J. C.R., Vorticity and vortex dynamics in complex turbulent flows, Canadian society for mechanical engineering, transactions (ISSN 0315-8977), no. 1, 1987, p. 21-35., 11, 21-35, (1987)
[26] Okubo, A., Horizontal dispersion of floatable particles in the vicinity of velocity singularities such as convergences, Deep Sea Res Oceanograph Abs, 17, 3, 445-454, (1970)
[27] Weiss, J., The dynamics of enstrophy transfer in two-dimensional hydrodynamics, Physica D, 48, 2, 273-294, (1991) · Zbl 0716.76025
[28] Chong, M. S.; Perry, A. E.; Cantwell, B. J., A general classification of three-dimensional flow fields, Phys Fluids A, 2, 5, 765-777, (1990)
[29] Gingold, R.; Monaghan, J., Smoothed particle hydrodynamics-theory and application to non-spherical stars, Mon Not R Astron Soc, 181, 289-375, (1977) · Zbl 0421.76032
[30] Liu, M.; Liu, G., Smoothed particle hydrodynamics (sph): an overview and recent developments, Arch Comput Methods Eng, 17, 1, 25-76, (2010) · Zbl 1348.76117
[31] Morris, J. P.; Fox, P. J.; Zhu, Y., Modeling low Reynolds number incompressible flows using sph, J Comput Phys, 136, 1, 214-226, (1997) · Zbl 0889.76066
[32] Hu, X.; Adams, N., An incompressible multi-phase sph method, J Comput Phys, 227, 1, 264-278, (2007) · Zbl 1126.76045
[33] Monaghan, J. J., Smoothed particle hydrodynamics, Annu Rev Astron Astrophys, 30, 1, 543-574, (1992)
[34] Szewc, K.; Pozorski, J.; Minier, J.-P., Analysis of the incompressibility constraint in the smoothed particle hydrodynamics method, Int J Numer Methods Eng, 92, 4, 343-369, (2012) · Zbl 1352.76098
[35] Batchelor, G., An introduction to fluid dynamics, (2000), Cambridge University Press · Zbl 0152.44402
[36] Zdravkovich, M., Flow around circular cylinders: volume i: fundamentals, Flow around circular cylinders: a comprehensive guide through flow phenomena, experiments, applications, mathematical models, and computer simulations, (1997), OUP Oxford · Zbl 0882.76004
[37] Pattenden, R. J.; Turnock, S. R.; Zhang, X., Measurements of the flow over a low-aspect-ratio cylinder mounted on a ground plane, Exp Fluids, 39, 1, 10-21, (2005)
[38] Roshko, A., On the development of turbulent wakes from vortex streets, Technical Report NACA-TR-1191, (1954), NACA
[39] Rubach, H.; von Karman, T., Über den mechanismus des flüssigkeits- und luftwiderstandes, Physikalische Zeitschrift, 13, 49-59, (1912) · JFM 43.0853.02
[40] Taneda, S., Visual study of unsteady separated flows around bodies, Prog Aerosp Sci, 17, 287-348, (1977)
[41] Koopmann, G. H., The vortex wakes of vibrating cylinders at low Reynolds numbers, J Fluid Mech, 28, 3, 501-512, (1967)
[42] van Dyke, M., An album of fluid motion, (1982), Parabolic Press
[43] Sumner, D., Flow above the free end of a surface-mounted finite-height circular cylinder: a review, J Fluids Struct, 43, 41-63, (2013)
[44] Baker, C., The laminar horseshoe vortex, J Fluid Mech, 95, 2, 347-367, (1979)
[45] Johnston, C. R.; Wilson, D. J., A vortex pair model for plume downwash into stack wakes, Atmos Environ, 31, 1, 13-22, (1997)
[46] Rostamy, N.; Sumner, D.; Bergstrom, D.; Bugg, J., Local flow field of a surface-mounted finite circular cylinder, J Fluids Struct, 34, 105-122, (2012)
[47] Bonet, J.; Lok, T.-S., Variational and momentum preservation aspects of smooth particle hydrodynamic formulations, Comput Methods Appl Mech Eng, 180, 1, 97-115, (1999) · Zbl 0962.76075
[48] Ihmsen, M.; Orthmann, J.; Solenthaler, B.; Kolb, A.; Teschner, M., Sph fluids in computer graphics, (Lefebvre, S.; Spagnuolo, M., Eurographics 2014 - state of the art reports, (2014), The Eurographics Association)
[49] Purcell, T. J.; Donner, C.; Cammarano, M.; Jensen, H. W.; Hanrahan, P., Photon mapping on programmable graphics hardware, Proceedings of the ACM SIGGRAPH/EUROGRAPHICS conference on graphics hardware, HWWS ’03, 41-50, (2003), Eurographics Association Aire-la-Ville, Switzerland, Switzerland
[50] Kalojanov, J.; Slusallek, P., A parallel algorithm for construction of uniform grids, Proceedings of the conference on high performance graphics 2009, HPG ’09, 23-28, (2009), ACM New York, NY, USA
[51] Goswami, P.; Schlegel, P.; Solenthaler, B.; Pajarola, R., Interactive sph simulation and rendering on the gpu, Proceedings of the 2010 ACM SIGGRAPH/Eurographics symposium on computer animation, 55-64, (2010)
[52] Ihmsen, M.; Akinci, N.; Becker, M.; Teschner, M., A parallel sph implementation on multi-core cpus, Comput Graphics Forum, 30, 1, 99-112, (2011)
[53] Nickolls, J.; Buck, I.; Garland, M.; Skadron, K., Scalable parallel programming with cuda, Queue, 6, 2, 40-53, (2008)
[54] Braun, S.; Wieth, L.; Koch, R.; Bauer, H.-J., A framework for permeable boundary conditions in sph: inlet, outlet, periodicity, 10th international SPHERIC Workshop, Parma, Italy, (2015)
[55] Takeda, H.; Miyama, S. M.; Sekiya, M., Numerical simulation of viscous flow by smoothed particle hydrodynamics, Progr Theor Phys, 92, 5, 939-960, (1994)
[56] Sun, P.; Colagrossi, A.; Marrone, S.; Zhang, A., Sph formulation of the finite-time Lyapunov exponents for the detection of Lagrangian coherent structures, Proceedings of the 11th international SPHERIC workshop, garching, Germany, (2016)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.