×

An automatic cognitive graph-based segmentation for detection of blood vessels in retinal images. (English) Zbl 1400.94006

Summary: This paper presents a hierarchical graph-based segmentation for blood vessel detection in digital retinal images. This segmentation employs some of perceptual Gestalt principles: similarity, closure, continuity, and proximity to merge segments into coherent connected vessel-like patterns. The integration of Gestalt principles is based on object-based features (e.g., color and black top-hat (BTH) morphology and context) and graph-analysis algorithms (e.g., Dijkstra path). The segmentation framework consists of two main steps: preprocessing and multiscale graph-based segmentation. Preprocessing is to enhance lighting condition, due to low illumination contrast, and to construct necessary features to enhance vessel structure due to sensitivity of vessel patterns to multiscale/multiorientation structure. Graph-based segmentation is to decrease computational processing required for region of interest into most semantic objects. The segmentation was evaluated on three publicly available datasets. Experimental results show that preprocessing stage achieves better results compared to state-of-the-art enhancement methods. The performance of the proposed graph-based segmentation is found to be consistent and comparable to other existing methods, with improved capability of detecting small/thin vessels.

MSC:

94A08 Image processing (compression, reconstruction, etc.) in information and communication theory
92C55 Biomedical imaging and signal processing

Software:

DIARETDB1
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Lee, S. J.; McCarty, C. A.; Taylor, H. R.; Keeffe, J. E., Costs of mobile screening for diabetic retinopathy: a practical framework for rural populations, The Australian Journal of Rural Health, 9, 4, 186-192, (2001) · doi:10.1046/j.1038-5282.2001.00356.x
[2] Tasman, W.; Patz, A.; McNamara, J. A.; Kaiser, R. S.; Trese, M. T.; Smith, B. T., Retinopathy of prematurity: the life of a lifetime disease, American Journal of Ophthalmology, 141, 1, 167-174, (2006) · doi:10.1016/j.ajo.2005.07.034
[3] Setiawan, A. W.; Mengko, T.; Santoso, O.; Suksmono, A., Color retinal image enhancement using clahe, Proceedings of the International Conference on ICT for Smart Society (ICISS ’13) · doi:10.1109/ICTSS.2013.6588092
[4] Azzopardi, G.; Strisciuglio, N.; Vento, M.; Petkov, N., Trainable COSFIRE filters for vessel delineation with application to retinal images, Medical Image Analysis, 19, 1, 46-57, (2015) · doi:10.1016/j.media.2014.08.002
[5] Zhao, Y.; Liu, Y.; Wu, X.; Harding, S. P.; Zheng, Y., Retinal vessel segmentation: an efficient graph cut approach with retinex and local phase, PLoS ONE, 10, 4, (2015) · doi:10.1371/journal.pone.0122332
[6] Imani, E.; Javidi, M.; Pourreza, H.-R., Improvement of retinal blood vessel detection using morphological component analysis, Computer Methods and Programs in Biomedicine, 118, 3, 263-279, (2015) · doi:10.1016/j.cmpb.2015.01.004
[7] Läthén, G.; Jonasson, J.; Borga, M., Blood vessel segmentation using multi-scale quadrature filtering, Pattern Recognition Letters, 31, 8, 762-767, (2010) · doi:10.1016/j.patrec.2009.09.020
[8] Miri, M. S.; Mahloojifar, A., Retinal image analysis using curvelet transform and multistructure elements morphology by reconstruction, IEEE Transactions on Biomedical Engineering, 58, 5, 1183-1192, (2011) · doi:10.1109/TBME.2010.2097599
[9] Fraz, M. M.; Barman, S. A.; Remagnino, P.; Hoppe, A.; Basit, A.; Uyyanonvara, B.; Rudnicka, A. R.; Owen, C. G., An approach to localize the retinal blood vessels using bit planes and centerline detection, Computer Methods and Programs in Biomedicine, 108, 2, 600-616, (2012) · doi:10.1016/j.cmpb.2011.08.009
[10] Bankhead, P.; Scholfield, C. N.; McGeown, J. G.; Curtis, T. M., Fast retinal vessel detection and measurement using wavelets and edge location refinement, PLoS ONE, 7, 3, (2012) · doi:10.1371/journal.pone.0032435
[11] Wang, C.; Komodakis, N.; Paragios, N., Markov Random Field modeling, inference and learning in computer vision and image understanding: a survey, Computer Vision and Image Understanding, 117, 11, 1610-1627, (2013) · doi:10.1016/j.cviu.2013.07.004
[12] Liao, M.; Zhao, Y.-Q.; Wang, X.-H.; Dai, P.-S., Retinal vessel enhancement based on multi-scale top-hat transformation and histogram fitting stretching, Optics and Laser Technology, 58, 56-62, (2014) · doi:10.1016/j.optlastec.2013.10.018
[13] Hoover, A.; Kouznetsova, V.; Goldbaum, M., Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response, IEEE Transactions on Medical Imaging, 19, 3, 203-210, (2000) · doi:10.1109/42.845178
[14] Kauppi, T.; Kalesnykiene, V.; Kamarainen, J.-K.; Lensu, L.; Sorri, I.; Raninen, A.; Voutilainen, R.; Pietilä, J.; Kälviäinen, H.; Uusitalo, H., The DIARETDB1 diabetic retinopathy database and evaluation protocol, Proceedings of the 18th British Machine Vision Conference (BMVC ’07) · doi:10.5244/c.21.15
[15] Niemeijer, M.; van Ginneken, B.; Cree, M. J.; Mizutani, A.; Quellec, G.; Sanchez, C. I.; Zhang, B.; Hornero, R.; Lamard, M.; Muramatsu, C.; Wu, X.; Cazuguel, G.; You, J.; Mayo, A.; Li, Q.; Hatanaka, Y.; Cochener, B.; Roux, C.; Karray, F.; Garcia, M.; Fujita, H.; Abramoff, M. D., Retinopathy online challenge: automatic detection of microaneurysms in digital color fundus photographs, IEEE Transactions on Medical Imaging, 29, 1, 185-195, (2010) · doi:10.1109/tmi.2009.2033909
[16] Marín, D.; Aquino, A.; Gegúndez-Arias, M. E.; Bravo, J. M., A new supervised method for blood vessel segmentation in retinal images by using gray-level and moment invariants-based features, IEEE Transactions on Medical Imaging, 30, 1, 146-158, (2011) · doi:10.1109/TMI.2010.2064333
[17] Fraz, M. M.; Remagnino, P.; Hoppe, A.; Uyyanonvara, B.; Rudnicka, A. R.; Owen, C. G.; Barman, S. A., Blood vessel segmentation methodologies in retinal images—a survey, Computer Methods and Programs in Biomedicine, 108, 1, 407-433, (2012) · doi:10.1016/j.cmpb.2012.03.009
[18] Mithun, N. C.; Das, S.; Fattah, S. A., Automated detection of optic disc and blood vessel in retinal image using morphological, edge detection and feature extraction technique, Proceedings of the 16th International Conference on Computer and Information Technology (ICCIT ’13) · doi:10.1109/iccitechn.2014.6997365
[19] Estrada, R.; Tomasi, C.; Cabrera, M. T.; Wallace, D. K.; Freedman, S. F.; Farsiu, S., Exploratory dijkstra forest based automatic vessel segmentation: applications in video indirect ophthalmoscopy (VIO), Biomedical Optics Express, 3, 2, 327-339, (2012) · doi:10.1364/boe.3.000327
[20] Yin, Y.; Adel, M.; Bourennane, S., Retinal vessel segmentation using a probabilistic tracking method, Pattern Recognition, 45, 4, 1235-1244, (2012) · Zbl 1231.68272 · doi:10.1016/j.patcog.2011.09.019
[21] Zana, F.; Klein, J.-C., Segmentation of vessel-like patterns using mathematical morphology and curvature evaluation, IEEE Transactions on Image Processing, 10, 7, 1010-1019, (2001) · Zbl 1061.68582 · doi:10.1109/83.931095
[22] Zabihi, S. M.; Delgir, M.; Pourreza, H. R., Retinal vessel segmentation using color image morphology and local binary patterns, Proceedings of the 6th Iranian Conference on Machine Vision and Image Processing (MVIP ’10) · doi:10.1109/iranianmvip.2010.5941129
[23] Dashtbozorg, B.; Mendonça, A. M.; Campilho, A., An automatic graph-based approach for artery/vein classification in retinal images, IEEE Transactions on Image Processing, 23, 3, 1073-1083, (2014) · Zbl 1374.94077 · doi:10.1109/tip.2013.2263809
[24] Koffka, K., Principles of Gestalt Psychology, (1935), New York, NY, USA: Harcourt, New York, NY, USA
[25] Wertheimer, M., Laws of organization in perceptual forms, Psychologische Forschung, 71-88, (1938)
[26] Wagemans, J.; Elder, J. H.; Kubovy, M.; Palmer, S. E.; Peterson, M. A.; Singh, M.; von der Heydt, R., A century of Gestalt psychology in visual perception: I. Perceptual grouping and figure-ground organization, Psychological Bulletin, 138, 6, 1172-1217, (2012) · doi:10.1037/a0029333
[27] Richtsfeld, A.; Zillich, M.; Vincze, M., Implementation of Gestalt principles for object segmentation, Proceedings of the 21st International Conference on Pattern Recognition (ICPR ’12)
[28] Mesquita, R. G.; Mello, C. A. B., Segmentation of natural scenes based on visual attention and gestalt grouping laws, Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC ’13) · doi:10.1109/smc.2013.722
[29] Pei, D.; Li, Z.; Ji, R.; Sun, F., Efficient semantic image segmentation with multi-class ranking prior, Computer Vision and Image Understanding, 120, 81-90, (2014) · doi:10.1016/j.cviu.2013.10.005
[30] Soille, P., Morphological Image Analysis: Principles and Applications, (2003), New York, NY, USA: Springer, New York, NY, USA · Zbl 1012.68212
[31] Soille, P., Morphological image compositing, IEEE Transactions on Pattern Analysis and Machine Intelligence, 28, 5, 673-683, (2006) · doi:10.1109/TPAMI.2006.99
[32] Cousty, J.; Najman, L.; Perret, B., Constructive links between some morphological hierarchies on edge-weighted graphs, Mathematical Morphology and Its Applications to Signal and Image Processing: 11th International Symposium, ISMM 2013, Uppsala, Sweden, May 27–29, 2013. Proceedings. Mathematical Morphology and Its Applications to Signal and Image Processing: 11th International Symposium, ISMM 2013, Uppsala, Sweden, May 27–29, 2013. Proceedings, Lecture Notes in Computer Science, 7883, 86-97, (2013), Berlin, Germany: Springer, Berlin, Germany · Zbl 1382.68291 · doi:10.1007/978-3-642-38294-9_8
[33] Elad, M., Retinex by two bilateral filters, Proceedings of the 5th International Conference on Scale Space and PDE Methods in Computer Vision, Scale-Space
[34] Khokher, M. R.; Ghafoor, A.; Siddiqui, A. M., Image segmentation using fuzzy rule based system and graph cuts, Proceedings of the 12th International Conference on Control, Automation, Robotics and Vision (ICARCV ’12) · doi:10.1109/icarcv.2012.6485319
[35] Felzenszwalb, P. F.; Huttenlocher, D. P., Efficient graph-based image segmentation, International Journal of Computer Vision, 59, 2, 167-181, (2004) · doi:10.1023/B:VISI.0000022288.19776.77
[36] Rezvanifar, A.; Khosravifard, M., Including the size of regions in image segmentation by region-based graph, IEEE Transactions on Image Processing, 23, 2, 635-644, (2014) · Zbl 1374.94323 · doi:10.1109/TIP.2013.2289984
[37] Dillencourt, M. B.; Samet, H.; Tamminen, M., A general approach to connected-component labeling for arbitrary image representations, Journal of the ACM, 39, 2, 253-280, (1992) · Zbl 0825.68657 · doi:10.1145/128749.128750
[38] Suzuki, K.; Horiba, I.; Sugie, N., Linear-time connected-component labeling based on sequential local operations, Computer Vision and Image Understanding, 89, 1, 1-23, (2003) · Zbl 1038.68107 · doi:10.1016/S1077-3142(02)00030-9
[39] Russell, S. J.; Norvig, P., Artificial Intelligence: A Modern Approach, (2003), Pearson Education
[40] Trimbl-Definiens Joint Press Release, Trimble Acquires Definiens—Earth Sciences Business to Expand Its Geospatial Portfolio, (2010)
[41] Fadzil, M. H. A.; Nugroho, H. A.; Nugroho, H.; Iznita, I. L., Contrast enhancement of retinal vasculature in digital fundus image, Proceedings of the International Conference on Digital Image Processing, IEEE · doi:10.1109/icdip.2009.32
[42] Nguyen, U. T. V.; Bhuiyan, A.; Park, L. A. F.; Ramamohanarao, K., An effective retinal blood vessel segmentation method using multi-scale line detection, Pattern Recognition, 46, 3, 703-715, (2013) · doi:10.1016/j.patcog.2012.08.009
[43] Orlando, J. I.; Blaschko, M.; Golland, P.; Hata, N.; Barillot, C.; Hornegger, J.; Howe, R., Learning fully-connected CRFs for blood vessel segmentation in retinal images, Medical Image Computing and Computer-Assisted Intervention—MICCAI 2014. Medical Image Computing and Computer-Assisted Intervention—MICCAI 2014, Lecture Notes in Computer Science, 8673, 634-641, (2014), New York, NY, USA: Springer, New York, NY, USA · doi:10.1007/978-3-319-10404-1_79
[44] Salazar-Gonzalez, A.; Kaba, D.; Li, Y.; Liu, X., Segmentation of the blood vessels and optic disk in retinal images, IEEE Journal of Biomedical and Health Informatics, 18, 6, 1874-1886, (2014) · doi:10.1109/JBHI.2014.2302749
[45] Shajahan, S. N.; Roy, R. C., An improved retinal blood vessel segmentation algorithm based on multistructure elements morphology, International Journal of Computer Applications, 57, 31-36, (2012)
[46] George, J.; Indu, S. P., Fast adaptive anisotropic filtering for medical image enhancement, Proceedings of the 8th IEEE International Symposium on Signal Processing and Information Technology (ISSPIT ’08) · doi:10.1109/isspit.2008.4775677
[47] Larose, D. T., Discovering Knowledge in Data: An Introduction to Data Mining, (2005), New York, NY, USA: John Wiley & Sons, New York, NY, USA · Zbl 1095.68643 · doi:10.1002/0471687545
[48] Fathi, A.; Naghsh-Nilchi, A. R., Automatic wavelet-based retinal blood vessels segmentation and vessel diameter estimation, Biomedical Signal Processing and Control, 8, 1, 71-80, (2013) · doi:10.1016/j.bspc.2012.05.005
[49] NVIDIA Corporation
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.