×

Fully resolved measurements of turbulent boundary layer flows up to \(Re_\tau=20\,000\). (English) Zbl 1415.76360

Summary: Fully resolved measurements of turbulent boundary layers are reported for the Reynolds number range \(Re_\tau=6000-20\,000\). Despite several decades of research in wall-bounded turbulence there is still controversy over the behaviour of streamwise turbulence intensities near the wall, especially at high Reynolds numbers. Much of it stems from the uncertainty in measurement due to finite spatial resolution. Conventional hot-wire anemometry is limited for high Reynolds number measurements due to limited spatial resolution issues that cause attenuation in the streamwise turbulence intensity profile near the wall. To address this issue we use the nano-scale thermal anemometry probe (NSTAP), developed at Princeton University to conduct velocity measurements in the high Reynolds number boundary layer facility at the University of Melbourne. The NSTAP has a sensing length almost one order of magnitude smaller than conventional hot-wires. This enables us to acquire fully resolved velocity measurements of turbulent boundary layers up to \(Re_\tau=20\,000\). Results show that in the near-wall region, the viscous-scaled streamwise turbulence intensity grows with \(Re_\tau\) in the Reynolds number range of the experiments. A second outer peak in the streamwise turbulence intensity is also shown to emerge at the highest Reynolds numbers. Moreover, the energy spectra in the near-wall region show excellent inner scaling over the small to moderate wavelength range, followed by a large-scale influence that increases with Reynolds number. Outer scaling in the outer region is found to collapse the energy spectra over high wavelengths across various Reynolds numbers.

MSC:

76F40 Turbulent boundary layers
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Alfredsson, P. H.; Segalini, A.; Örlü, R., A new scaling for the streamwise turbulence intensity in wall-bounded turbulent flows and what it tells us about the ‘outer’ peak, Phys. Fluids, 23, 4, (2011) · doi:10.1063/1.3581074
[2] Baars, W. J.; Squire, D. T.; Talluru, K. M.; Abbassi, M. R.; Hutchins, N.; Marusic, I., Wall-drag measurements of smooth- and rough-wall turbulent boundary layers using a floating element, Exp. Fluids, 57, 5, 90, (2016) · doi:10.1007/s00348-016-2168-y
[3] Bailey, S. C. C.; Kunkel, G. J.; Hultmark, M.; Vallikivi, M.; Hill, J. P.; Meyer, K. A.; Tsay, C.; Arnold, C. B.; Smits, A. J., Turbulence measurements using a nanoscale thermal anemometry probe, J. Fluid Mech., 663, 160-179, (2010) · Zbl 1205.76005 · doi:10.1017/S0022112010003447
[4] Chauhan, K. A.; Monkewitz, P. A.; Nagib, H. M., Criteria for assessing experiments in zero pressure gradient boundary layers, Fluid Dyn. Res., 41, 2, (2009) · Zbl 1286.76007 · doi:10.1088/0169-5983/41/2/021404
[5] Chin, C. C.; Hutchins, N.; Ooi, A.; Marusic, I., Use of direct numerical simulation (DNS) data to investigate spatial resolution issues in measurements of wall-bounded turbulence, Meas. Sci. Technol., 20, 11, (2009) · doi:10.1088/0957-0233/20/11/115401
[6] Chin, C. C.; Hutchins, N.; Ooi, A.; Marusic, I., Spatial resolution correction for hot-wire anemometry in wall turbulence, Exp. Fluids, 50, 5, 1443-1453, (2011) · doi:10.1007/s00348-010-1003-0
[7] Chin, C. C.; Monty, J. P.; Ooi, A., Reynolds number effects in DNS of pipe flow and comparison with channels and boundary layers, Intl J. Heat Fluid Flow, 45, 33-40, (2014) · doi:10.1016/j.ijheatfluidflow.2013.11.007
[8] Coleman, H. W.; Steele, W. G., Experimentation, Validation, and Uncertainty Analysis for Engineers, (2009), Wiley · doi:10.1002/9780470485682
[9] De Graaff, D. B.; Eaton, J. K., Reynolds-number scaling of the flat-plate turbulent boundary layer, J. Fluid Mech., 422, 319-346, (2000) · Zbl 0958.76509 · doi:10.1017/S0022112000001713
[10] Fernholz, H. H.; Finley, P. J., The incompressible zero-pressure-gradient turbulent boundary layer: an assessment of the data, Prog. Aerosp. Sci., 32, 4, 245-311, (1996) · doi:10.1016/0376-0421(95)00007-0
[11] Hoyas, S.; Jiménez, J., Scaling of the velocity fluctuations in turbulent channels up to Re_{𝜏} = 2003, Phys. Fluids, 18, 1, (2006) · doi:10.1063/1.2162185
[12] Hultmark, M.; Smits, A. J., Temperature corrections for constant temperature and constant current hot-wire anemometers, Meas. Sci. Technol., 21, 10, (2010) · doi:10.1088/0957-0233/21/10/105404
[13] Hultmark, M.; Vallikivi, M.; Bailey, S. C. C.; Smits, A. J., Turbulent pipe flow at extreme Reynolds numbers, Phys. Rev. Lett., 108, 9, (2012) · Zbl 1294.76182 · doi:10.1103/PhysRevLett.108.094501
[14] Hultmark, M.; Vallikivi, M.; Bailey, S. C. C.; Smits, A. J., Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow, J. Fluid Mech., 728, 376-395, (2013) · Zbl 1291.76166 · doi:10.1017/jfm.2013.255
[15] Hutchins, N.; Chauhan, K.; Marusic, I.; Monty, J. P.; Klewicki, J., Towards reconciling the large-scale structure of turbulent boundary layers in the atmosphere and laboratory, Boundary-Layer Meteorol., 145, 2, 273-306, (2012) · doi:10.1007/s10546-012-9735-4
[16] Hutchins, N.; Marusic, I., Evidence of very long meandering features in the logarithmic region of turbulent boundary layers, J. Fluid Mech., 579, 1-28, (2007) · Zbl 1113.76004 · doi:10.1017/S0022112006003946
[17] Hutchins, N.; Nickels, T. B.; Marusic, I.; Chong, M. S., Hot-wire spatial resolution issues in wall-bounded turbulence, J. Fluid Mech., 635, 103-136, (2009) · Zbl 1183.76025 · doi:10.1017/S0022112009007721
[18] Jiménez, J.; Pinelli, A., The autonomous cycle of near-wall turbulence, J. Fluid Mech., 389, 335-359, (1999) · Zbl 0948.76025 · doi:10.1017/S0022112099005066
[19] Klewicki, J. C.; Falco, R. E., On accurately measuring statistics associated with small-scale structure in turbulent boundary layers using hot-wire probes, J. Fluid Mech., 219, 119-142, (1990) · doi:10.1017/S0022112090002889
[20] Kline, S. J.; Reynolds, W. C.; Schraub, F. A.; Runstadler, P. W., The structure of turbulent boundary layers, J. Fluid Mech., 30, 4, 741-773, (1967) · Zbl 1461.76274 · doi:10.1017/S0022112067001740
[21] Lee, M.; Moser, R. D., Direct numerical simulation of turbulent channel flow up to Re_{𝜏}≈ 5200, J. Fluid Mech., 774, 395-415, (2015) · doi:10.1017/jfm.2015.268
[22] Ligrani, P. M.; Bradshaw, P., Spatial resolution and measurement of turbulence in the viscous sublayer using subminiature hot-wire probes, Exp. Fluids, 5, 6, 407-417, (1987) · doi:10.1007/BF00264405
[23] Lozano-Durán, A.; Jiménez, J., Effect of the computational domain on direct simulations of turbulent channels up to Re_{𝜏} = 4200, Phys. Fluids, 26, 1, (2014) · doi:10.1063/1.4862918
[24] Marusic, I.; Baars, W. J.; Hutchins, N., Scaling of the streamwise turbulence intensity in the context of inner – outer interactions in wall turbulence, Phys. Rev. Fluids, 2, 10, (2017) · doi:10.1103/PhysRevFluids.2.100502
[25] Marusic, I.; Chauhan, K. A.; Kulandaivelu, V.; Hutchins, N., Evolution of zero-pressure-gradient boundary layers from different tripping conditions, J. Fluid Mech., 783, 379-411, (2015) · Zbl 1382.76125 · doi:10.1017/jfm.2015.556
[26] Marusic, I.; Mathis, R.; Hutchins, N., High Reynolds number effects in wall turbulence, Intl J. Heat Fluid Flow, 31, 3, 418-428, (2010) · Zbl 1226.76015 · doi:10.1016/j.ijheatfluidflow.2010.01.005
[27] Marusic, I.; Mckeon, B. J.; Monkewitz, P. A.; Nagib, H. M.; Smits, A. J.; Sreenivasan, K. R., Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues, Phys. Fluids, 22, 6, (2010) · Zbl 1190.76086 · doi:10.1063/1.3453711
[28] Marusic, I.; Monty, J. P.; Hultmark, M.; Smits, A. J., On the logarithmic region in wall turbulence, J. Fluid Mech., 716, R3, (2013) · Zbl 1284.76206 · doi:10.1017/jfm.2012.511
[29] Mathis, R.; Hutchins, N.; Marusic, I., Large-scale amplitude modulation of the small-scale structures in turbulent boundary layers, J. Fluid Mech., 628, 311-337, (2009) · Zbl 1181.76008 · doi:10.1017/S0022112009006946
[30] Mathis, R., Hutchins, N. & Marusic, I.2010Scaling of inner and outer regions for flat plate boundary layers. In Proceedings of the 17th Australasian Fluid Mechanics Conference, Auckland, New Zealand, pp. 5-9.
[31] Metzger, M. M.; Klewicki, J. C., A comparative study of near-wall turbulence in high and low Reynolds number boundary layers, Phys. Fluids, 13, 3, 692-701, (2001) · Zbl 1184.76364 · doi:10.1063/1.1344894
[32] Metzger, M. M.; Klewicki, J. C.; Bradshaw, K. L.; Sadr, R., Scaling the near-wall axial turbulent stress in the zero pressure gradient boundary layer, Phys. Fluids, 13, 6, 1819-1821, (2001) · Zbl 1184.76365 · doi:10.1063/1.1368852
[33] Metzger, M. M.; Mckeon, B. J.; Holmes, H., The near-neutral atmospheric surface layer: turbulence and non-stationarity, Phil. Trans. R. Soc. Lond. A, 365, 1852, 859-876, (2007) · Zbl 1152.76410 · doi:10.1098/rsta.2006.1946
[34] Miller, M. A.; Estejab, B.; Bailey, S. C. C., Evaluation of hot-wire spatial filtering corrections for wall turbulence and correction for end-conduction effects, Exp. Fluids, 55, 5, 1735, (2014) · doi:10.1007/s00348-014-1735-3
[35] Mochizuki, S.; Nieuwstadt, F. T. M., Reynolds-number-dependence of the maximum in the streamwise velocity fluctuations in wall turbulence, Exp. Fluids, 21, 3, 218-226, (1996) · doi:10.1007/BF00191694
[36] Monkewitz, P. A.; Duncan, R. D.; Nagib, H. M., Correcting hot-wire measurements of stream-wise turbulence intensity in boundary layers, Phys. Fluids, 22, 9, (2010) · doi:10.1063/1.3481146
[37] Morrison, J. F.; Mckeon, B. J.; Jiang, W.; Smits, A. J., Scaling of the streamwise velocity component in turbulent pipe flow, J. Fluid Mech., 508, 99-131, (2004) · Zbl 1060.76508 · doi:10.1017/S0022112004008985
[38] Nickels, T. B.; Marusic, I.; Hafez, S.; Chong, M. S., Evidence of the k_{1}-1 law in a high-Reynolds-number turbulent boundary layer, Phys. Rev. Lett., 95, 7, (2005) · doi:10.1103/PhysRevLett.95.074501
[39] Örlü, R.; Fiorini, T.; Segalini, A.; Bellani, G.; Talamelli, A.; Alfredsson, P. H., Reynolds stress scaling in pipe flow turbulence: first results from CICLoPE, Phil. Trans. R. Soc. Lond. A, 375, 2089, (2017)
[40] Perry, A. E.; Henbest, S.; Chong, M. S., A theoretical and experimental study of wall turbulence, J. Fluid Mech., 165, 163-199, (1986) · Zbl 0597.76052 · doi:10.1017/S002211208600304X
[41] Philip, J.; Hutchins, N.; Monty, J. P.; Marusic, I., Spatial averaging of velocity measurements in wall-bounded turbulence: single hot-wires, Meas. Sci. Technol., 24, 11, (2013)
[42] Piomelli, U.; Balaras, E., Wall-layer models for large-eddy simulations, Annu. Rev. Fluid Mech., 34, 1, 349-374, (2002) · Zbl 1006.76041 · doi:10.1146/annurev.fluid.34.082901.144919
[43] Rosenberg, B. J.; Hultmark, M.; Vallikivi, M.; Bailey, S. C. C.; Smits, A. J., Turbulence spectra in smooth- and rough-wall pipe flow at extreme Reynolds numbers, J. Fluid Mech., 731, 46-63, (2013) · Zbl 1294.76182 · doi:10.1017/jfm.2013.359
[44] Saddoughi, S. G.; Veeravalli, S. V., Local isotropy in turbulent boundary layers at high Reynolds number, J. Fluid Mech., 268, 333-372, (1994) · doi:10.1017/S0022112094001370
[45] Segalini, A.; Örlü, R.; Schlatter, P.; Alfredsson, P. H.; Rüedi, J.-D.; Talamelli, A., A method to estimate turbulence intensity and transverse Taylor microscale in turbulent flows from spatially averaged hot-wire data, Exp. Fluids, 51, 3, 693, (2011) · doi:10.1007/s00348-011-1088-0
[46] Sillero, J. A.; Jiménez, J.; Moser, R. D., One-point statistics for turbulent wall-bounded flows at Reynolds numbers up to 𝛿+≈ 2000, Phys. Fluids, 25, 10, (2013) · doi:10.1063/1.4823831
[47] Smits, A. J.; Monty, J. P.; Hultmark, M.; Bailey, S. C. C.; Hutchins, N.; Marusic, I., Spatial resolution correction for wall-bounded turbulence measurements, J. Fluid Mech., 676, 41-53, (2011) · Zbl 1241.76288 · doi:10.1017/jfm.2011.19
[48] Sreenivasan, K. R., On the universality of the Kolmogorov constant, Phys. Fluids, 7, 11, 2778-2784, (1995) · Zbl 1027.76611 · doi:10.1063/1.868656
[49] Talamelli, A.; Persiani, F.; Fransson, J. H. M.; Alfredsson, P. H.; Johansson, A. V.; Nagib, H. M.; Rüedi, J.-D.; Sreenivasan, K. R.; Monkewitz, P. A., CICLoPE: a response to the need for high Reynolds number experiments, Fluid Dyn. Res., 41, 2, (2009) · Zbl 1286.76010 · doi:10.1088/0169-5983/41/2/021407
[50] Talamelli, A.; Segalini, A.; Örlü, R.; Schlatter, P.; Alfredsson, P. H., Correcting hot-wire spatial resolution effects in third- and fourth-order velocity moments in wall-bounded turbulence, Exp. Fluids, 54, 4, 1496, (2013) · doi:10.1007/s00348-013-1496-4
[51] Talluru, K. M.; Kulandaivelu, V.; Hutchins, N.; Marusic, I., A calibration technique to correct sensor drift issues in hot-wire anemometry, Meas. Sci. Technol., 25, 10, (2014) · doi:10.1088/0957-0233/25/10/105304
[52] Taylor, G. I., The spectrum of turbulence, Proc. R. Soc. A, 164, 476-490, (1938) · JFM 64.1454.02 · doi:10.1098/rspa.1938.0032
[53] Townsend, A. A., The Structure of Turbulent Shear Flow, (1976), Cambridge University Press · Zbl 0325.76063
[54] Vallikivi, M.; Ganapathisubramani, B.; Smits, A. J., Spectral scaling in boundary layers and pipes at very high Reynolds numbers, J. Fluid Mech., 771, 303-326, (2015) · doi:10.1017/jfm.2015.181
[55] Vallikivi, M.; Hultmark, M.; Smits, A. J., Turbulent boundary layer statistics at very high Reynolds number, J. Fluid Mech., 779, 371-389, (2015) · Zbl 1360.76103 · doi:10.1017/jfm.2015.273
[56] Vallikivi, M.; Smits, A. J., Fabrication and characterization of a novel nanoscale thermal anemometry probe, J. Microelectromech. Syst., 23, 4, 899-907, (2014) · doi:10.1109/JMEMS.2014.2299276
[57] Vincenti, P.; Klewicki, J.; Morrill-Winter, C.; White, C. M.; Wosnik, M., Streamwise velocity statistics in turbulent boundary layers that spatially develop to high Reynolds number, Exp. Fluids, 54, 12, 1-13, (2013) · doi:10.1007/s00348-013-1629-9
[58] Willert, C. E.; Soria, J.; Stanislas, M.; Klinner, J.; Amili, O.; Eisfelder, M.; Cuvier, C.; Bellani, G.; Fiorini, T.; Talamelli, A., Near-wall statistics of a turbulent pipe flow at shear Reynolds numbers up to 40 000, J. Fluid Mech., 826, R5, (2017) · doi:10.1017/jfm.2017.498
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.