×

Axisymmetric simulation of viscoelastic filament thinning with the Oldroyd-B model. (English) Zbl 1421.76014

Summary: A fundamental understanding of the filament thinning of viscoelastic fluids is important in practical applications such as spraying and printing of complex materials. Here, we present direct numerical simulations of the two-phase axisymmetric momentum equations using the volume-of-fluid technique for interface tracking and the log-conformation transformation to solve the viscoelastic constitutive equation. The numerical results for the filament thinning are in excellent agreement with the theoretical description developed with a slender body approximation. We show that the off-diagonal stress component of the polymeric stress tensor is important and should not be neglected when investigating the later stages of filament thinning. This demonstrates that such numerical methods can be used to study details not captured by the one-dimensional slender body approximation, and pave the way for numerical studies of viscoelastic fluid flows.

MSC:

76A10 Viscoelastic fluids
76M10 Finite element methods applied to problems in fluid mechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Anna, S. L.; Mckinley, G. H., Elasto-capillary thinning and breakup of model elastic liquids, J. Rheol., 45, 1, 115-138, (2001)
[2] Ardekani, A. M.; Sharma, V.; Mckinley, G. H., Dynamics of bead formation, filament thinning and breakup in weakly viscoelastic jets, J. Fluid. Mech., 665, 46-56, (2010) · Zbl 1225.76188
[3] Balci, N.; Thomases, B.; Renardy, M.; Doering, C. R., Symmetric factorization of the conformation tensor in viscoelastic fluid models, J. Non-Newtonian Fluid Mech., 166, 11, 546-553, (2011) · Zbl 1359.76023
[4] Basaran, O. A.; Gao, H.; Bhat, P. P., Nonstandard inkjets, Annu. Rev. Fluid Mech., 45, 85-113, (2013) · Zbl 1359.76289
[5] Bazilevskii, A. V.; Entov, V. M.; Lerner, M. M.; Rozhkov, A. N., Failure of polymer solution filaments, Polymer Science Series Vysokomolekuliarnye Soedineniia, 39, 316-324, (1997)
[6] Bhat, P. P.; Appathurai, S.; Harris, M. T.; Pasquali, M.; Mckinley, G. H.; Basaran, O. A., Formation of beads-on-a-string structures during break-up of viscoelastic filaments, Nat. Phys., 6, 8, 625-631, (2010)
[7] Bousfield, D. W.; Keunings, R.; Marrucci, G.; Denn, M. M., Nonlinear analysis of the surface tension driven breakup of viscoelastic filaments, J. Non-Newtonian Fluid Mech., 21, 1, 79-97, (1986)
[8] Chang, H.-C.; Demekhin, E. A.; Kalaidin, E., Iterated stretching of viscoelastic jets, Phys. Fluids, 11, 7, 1717-1737, (1999) · Zbl 1147.76355
[9] Clasen, C.; Eggers, J.; Fontelos, M. A.; Li, J.; Mckinley, G. H., The beads-on-string structure of viscoelastic threads, J. Fluid Mech., 556, 283-308, (2006) · Zbl 1095.76003
[10] Dealy, J. M., Weissenberg and Deborah numbers – their definition and use, Rheol. Bull., 79, 2, 14-18, (2010)
[11] Deike, L.; Ghabache, E.; Liger-Belair, G.; Das, A. K.; Zaleski, S.; Popinet, S.; Séon, T., Dynamics of jets produced by bursting bubbles, Phys. Rev. Fluids, 3, 1, (2018)
[12] Deike, L.; Melville, W. K.; Popinet, S., Air entrainment and bubble statistics in breaking waves, J. Fluid Mech., 801, 91-129, (2016) · Zbl 1462.76040
[13] Eggers, J., Instability of a polymeric thread, Phys. Fluids, 26, 3, (2014) · Zbl 1321.76027
[14] Eggers, J.; Villermaux, E., Physics of liquid jets, Rep. Progr. Phys., 71, 3, (2008)
[15] Étienne, J.; Hinch, E. J.; Li, J., A Lagrangian-Eulerian approach for the numerical simulation of free-surface flow of a viscoelastic material, J. Non-Newtonian Fluid Mech., 136, 2-3, 157-166, (2006) · Zbl 1195.76090
[16] Fattal, R.; Kupferman, R., Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation, J. Non-Newtonian Fluid Mech., 126, 1, 23-37, (2005) · Zbl 1099.76044
[17] Hao, J.; Pan, T.-W., Simulation for high Weissenberg number: viscoelastic flow by a finite element method, Appl. Math. Lett., 20, 9, 988-993, (2007) · Zbl 1152.76428
[18] Harlen, O. G.; Rallison, J. M.; Szabo, P., A split Lagrangian-Eulerian method for simulating transient viscoelastic flows, J. Non-Newtonian Fluid Mech., 60, 1, 81-104, (1995)
[19] Haward, S. J.; Oliveira, M. S. N.; Alves, M. A.; Mckinley, G. H., Optimized cross-slot flow geometry for microfluidic extensional rheometry, Phys. Rev. Lett., 109, 12, (2012)
[20] Howland, C. J.; Antkowiak, A.; Castrejón-Pita, J. R.; Howison, S. D.; Oliver, J. M.; Style, R. W.; Castrejón-Pita, A. A., It’s harder to splash on soft solids, Phys. Rev. Lett., 117, 18, (2016)
[21] Hulsen, M. A.; Fattal, R.; Kupferman, R., Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms, J. Non-Newtonian Fluid Mech., 127, 1, 27-39, (2005) · Zbl 1187.76615
[22] Keunings, R., On the high Weissenberg number problem, J. Non-Newtonian Fluid Mech., 20, 209-226, (1986) · Zbl 0589.76021
[23] Li, J.; Fontelos, M. A., Drop dynamics on the beads-on-string structure for viscoelastic jets: a numerical study, Phys. Fluids, 15, 4, 922-937, (2003) · Zbl 1186.76320
[24] Lopez-Herrera, J. M., Popinet, S. & Castrejón-Pita, A. A.2018 An adaptive solver for viscoelastic incompressible two-phase problems applied to the study of the splashing of slightly viscoelastic droplets. arXiv:1807.00103.
[25] Morrison, N. F.; Harlen, O. G., Viscoelasticity in inkjet printing, Rheol. Acta, 49, 6, 619-632, (2010)
[26] Popinet, S., A quadtree-adaptive multigrid solver for the Serre-Green-Naghdi equations, J. Comput. Phys., 302, 336-358, (2015) · Zbl 1349.76377
[27] Popinet, S., Numerical models of surface tension, Annu. Rev. Fluid Mech., 50, 1, 49-75, (2018) · Zbl 1384.76016
[28] Renardy, M., Asymptotic structure of the stress field in flow past a cylinder at high Weissenberg number, J. Non-Newtonian Fluid Mech., 90, 1, 13-23, (2000) · Zbl 0967.76010
[29] Sattler, R.; Wagner, C.; Eggers, J., Blistering pattern and formation of nanofibers in capillary thinning of polymer solutions, Phys. Rev. Lett., 100, 16, (2008)
[30] Turkoz, E.; Perazzo, A.; Kim, H.; Stone, H. A.; Arnold, C. B., Impulsively induced jets from viscoelastic films for high-resolution printing, Phys. Rev. Lett., 120, 7, (2018)
[31] Wagner, C.; Amarouchene, Y.; Bonn, D.; Eggers, J., Droplet detachment and satellite bead formation in viscoelastic fluids, Phys. Rev. Lett., 95, 16, (2005)
[32] Yao, M.; Mckinley, G. H., Numerical simulation of extensional deformations of viscoelastic liquid bridges in filament stretching devices, J. Non-Newtonian Fluid Mech., 74, 1-3, 47-88, (1998) · Zbl 0957.76005
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.