×

Equivalence and symmetries for variable coefficient linear heat type equations. II: Fundamental solutions. (English) Zbl 1391.35172

Summary: [For part I see the author, ibid. 59, No. 5, 051507, 31 p. (2018: Zbl 1401.35143).] We present a comparative study of fundamental solutions (heat kernels) of variable coefficient heat type partial differential equations based on Lie symmetry group methods and equivalence transformations discussed in the work of Güngör [loc. cit.]. Applications will include both one- and two-dimensional equations.{
©2018 American Institute of Physics}

MSC:

35K05 Heat equation
35B06 Symmetries, invariants, etc. in context of PDEs
35A08 Fundamental solutions to PDEs
35K08 Heat kernel

Citations:

Zbl 1401.35143
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Güngör, F., Equivalence and symmetries for variable coefficient linear heat type equations. I, J. Math. Phys., 59, 5, 051507, (2018) · Zbl 1401.35143 · doi:10.1063/1.5000589
[2] Craddock, M. J.; Dooley, A. H., Symmetry group methods for heat kernels, J. Math. Phys., 42, 1, 390-418, (2001) · Zbl 1063.35516 · doi:10.1063/1.1316763
[3] Craddock, M.; Platen, E., Symmetry group methods for fundamental solutions, J. Differ. Equations, 207, 2, 285-302, (2004) · Zbl 1065.35016 · doi:10.1016/j.jde.2004.07.026
[4] Craddock, M.; Lennox, K. A., Lie group symmetries as integral transforms of fundamental solutions, J. Differ. Equations, 232, 2, 652-674, (2007) · Zbl 1147.35009 · doi:10.1016/j.jde.2006.07.011
[5] Craddock, M., Fundamental solutions, transition densities and the integration of Lie symmetries, J. Differ. Equations, 246, 6, 2538-2560, (2009) · Zbl 1227.35012 · doi:10.1016/j.jde.2008.10.017
[6] Craddock, M.; Lennox, K. A., Lie symmetry methods for multi-dimensional parabolic PDEs and diffusions, J. Differ. Equations, 252, 1, 56-90, (2012) · Zbl 1242.35008 · doi:10.1016/j.jde.2011.09.024
[7] Kang, J.; Qu, C., Symmetry groups and fundamental solutions for systems of parabolic equations, J. Math. Phys., 53, 2, 023509, (2012) · Zbl 1274.35177 · doi:10.1063/1.3684749
[8] Winternitz, P.; Conte, R.; Boccara, N., Group theory and exact solutions of partially integrable differential systems, Partially Integrable Evolution Equations in Physics, (1989), Kluwer Academic Publishers: Kluwer Academic Publishers, The Netherlands
[9] Olver, P. J., Applications of Lie Groups to Differential Equations, (1991), Springer: Springer, New York
[10] Weisner, L., Generating functions for Hermite functions, Can. J. Math., 11, 141-147, (1959) · Zbl 0085.06103 · doi:10.4153/cjm-1959-018-4
[11] Nikiforov, A. F.; Uvarov, V. B., Special Functions of Mathematical Physics: A Unified Introduction with Applications, (1988), Birkhäuser: Birkhäuser, Boston · Zbl 0624.33001
[12] Craddock, M.; Konstandatos, O.; Lennox, K. A., Some recent developments in the theory of Lie group symmetries for PDEs, Advances in Mathematics Research, 1-40, (2009), Nova Science Publishers
[13] Craddock, M.; Lennox, K. A., The calculation of expectations for classes of diffusion processes by Lie symmetry methods, Ann. Appl. Probab., 19, 1, 127-157, (2009) · Zbl 1227.35028 · doi:10.1214/08-aap534
[14] Baldeaux, J.; Platen, E., Lie symmetry group methods, Functionals of Multidimensional Diffusions with Applications to Finance, 101-140, (2013), Springer International Publishing · Zbl 1401.60001
[15] Sneddon, I. N., The Use of Integral Transforms, (1972), McGraw-Hill Book Company · Zbl 0237.44001
[16] Güngör, F., Group classification and exact solutions of a radially symmetric porous-medium equation, Int. J. Non-Linear Mech., 37, 245-255, (2002) · Zbl 1116.76448 · doi:10.1016/s0020-7462(00)00109-8
[17] Popovych, R. O.; Kunzinger, M.; Ivanova, N. M., Conservation laws and potential symmetries of linear parabolic equations, Acta Appl. Math., 100, 2, 113-185, (2008) · Zbl 1185.35009 · doi:10.1007/s10440-007-9178-y
[18] Gazizov, R. K.; Ibragimov, N. H., Lie symmetry analysis of differential equations in finance, Nonlinear Dyn., 17, 4, 387-407, (1998) · Zbl 0929.35006 · doi:10.1023/a:1008304132308
[19] Pavliotis, G. A., Stochastic Processes and Applications, (2014), Springer · Zbl 1318.60003
[20] Lopez, R. M.; Suslov, S. K., The Cauchy problem for a forced harmonic oscillator, Rev. Mex. Fis. E, 55, 196-215, (2009)
[21] Laurence, P.; Wang, T., Closed form solutions for quadratic and inverse quadratic term structure models, Int. J. Theor. Appl. Finance, 08, 8, 1059-1083, (2005) · Zbl 1106.35120 · doi:10.1142/s0219024905003396
[22] Daboul, J., Güngör, F., Liu, D., and McAnally, D., “Symmetries of the pseudo-diffusion equation, and its unconventional 2-sided kernel,” e-print .
[23] Kovalenko, S., Stogniy, V., and Tertychnyi, M., “Lie symmetries of fundamental solutions of one (2+1)-dimensional ultra-parabolic Fokker-Planck-Kolmogorov equation,” e-print .
[24] Spichak, S.; Stognii, V., Symmetry classification and exact solutions of the Kramers equation, J. Math. Phys., 39, 6, 3505-3510, (1998) · Zbl 1001.82065 · doi:10.1063/1.532447
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.