×

\( \mathcal{N}=1 \) Euler anomaly flow from dilaton effective action. (English) Zbl 1388.81885

Summary: We consider \(\mathcal N = 1\) supersymmetric gauge theories in the conformal window. The running of the gauge coupling is absorbed into the metric by applying a suitable matter superfield- and Weyl-transformation. The computation becomes equivalent to one of a free theory in a curved background carrying the information of the renormalisation group flow. We use the techniques of conformal anomaly matching and dilaton effective action, by Komargodski and Schwimmer, to rederive the difference of the Euler anomaly coefficient \(\Delta a \equiv a_{\mathrm{UV}}-a_{\mathrm{IR}}\) for the \(\mathcal N = 1\) theory. The structure of \(\Delta a\) is therefore in one-to-one correspondence with the Wess-Zumino dilaton action.

MSC:

81T60 Supersymmetric field theories in quantum mechanics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] D. Anselmi, D.Z. Freedman, M.T. Grisaru and A.A. Johansen, Nonperturbative formulas for central functions of supersymmetric gauge theories, Nucl. Phys.B 526 (1998) 543 [hep-th/9708042] [INSPIRE]. · Zbl 1031.81565 · doi:10.1016/S0550-3213(98)00278-8
[2] I. Jack and C. Poole, The a-function for gauge theories, JHEP01 (2015) 138 [arXiv:1411.1301] [INSPIRE]. · Zbl 1388.81336 · doi:10.1007/JHEP01(2015)138
[3] F. Baume, B. Keren-Zur, R. Rattazzi and L. Vitale, The local Callan-Symanzik equation: structure and applications, JHEP08 (2014) 152 [arXiv:1401.5983] [INSPIRE]. · Zbl 1333.81307 · doi:10.1007/JHEP08(2014)152
[4] R. Auzzi and B. Keren-Zur, Superspace formulation of the local RG equation, JHEP05 (2015) 150 [arXiv:1502.05962] [INSPIRE]. · Zbl 1388.81111 · doi:10.1007/JHEP05(2015)150
[5] D.Z. Freedman and H. Osborn, Constructing a c function for SUSY gauge theories, Phys. Lett.B 432 (1998) 353 [hep-th/9804101] [INSPIRE]. · doi:10.1016/S0370-2693(98)00649-2
[6] Z. Komargodski and A. Schwimmer, On renormalization group flows in four dimensions, JHEP12 (2011) 099 [arXiv:1107.3987] [INSPIRE]. · Zbl 1306.81140 · doi:10.1007/JHEP12(2011)099
[7] Z. Komargodski, The constraints of conformal symmetry on RG flows, JHEP07 (2012) 069 [arXiv:1112.4538] [INSPIRE]. · Zbl 1397.81383 · doi:10.1007/JHEP07(2012)069
[8] J.L. Cardy, Is there a c theorem in four-dimensions?, Phys. Lett.B 215 (1988) 749 [INSPIRE]. · doi:10.1016/0370-2693(88)90054-8
[9] G.M. Shore, A local renormalization group equation, diffeomorphisms and conformal invariance in σ models, Nucl. Phys.B 286 (1987) 349 [INSPIRE]. · doi:10.1016/0550-3213(87)90445-7
[10] H. Osborn, Local renormalization group equations in quantum field theory, in Proceedings, Renormalization group′91, Dubna Russia (1991), pg. 128 [INSPIRE].
[11] S.M. Christensen and M.J. Duff, New gravitational index theorems and supertheorems, Nucl. Phys.B 154 (1979) 301 [INSPIRE]. · Zbl 0967.83535 · doi:10.1016/0550-3213(79)90516-9
[12] M.J. Duff, Twenty years of the Weyl anomaly, Class. Quant. Grav.11 (1994) 1387 [hep-th/9308075] [INSPIRE]. · Zbl 0808.53063 · doi:10.1088/0264-9381/11/6/004
[13] M.J. Duff, Observations on conformal anomalies, Nucl. Phys.B 125 (1977) 334 [INSPIRE]. · doi:10.1016/0550-3213(77)90410-2
[14] L. Bonora, P. Cotta-Ramusino and C. Reina, Conformal anomaly and cohomology, Phys. Lett.B 126 (1983) 305 [INSPIRE]. · Zbl 0521.53064 · doi:10.1016/0370-2693(83)90169-7
[15] J. Wess and B. Zumino, Consequences of anomalous Ward identities, Phys. Lett.B 37 (1971) 95 [INSPIRE]. · doi:10.1016/0370-2693(71)90582-X
[16] N. Birrell and P. Davies, Quantum fields in curved space, Cambridge Monographs on Mathematical Physics, Cambridge University Press, Cambridge U.K. (1982) [INSPIRE]. · Zbl 0476.53017
[17] M. Shifman, Advanced topics in quantum field theory: a lecture course, Cambridge Univ. Press, Cambridge U.K. (2012) [INSPIRE]. · Zbl 1247.81007
[18] K. Konishi, Anomalous supersymmetry transformation of some composite operators in SQCD, Phys. Lett.B 135 (1984) 439 [INSPIRE]. · doi:10.1016/0370-2693(84)90311-3
[19] K.-I. Konishi and K.-I. Shizuya, Functional integral approach to chiral anomalies in supersymmetric gauge theories, Nuovo Cim.A 90 (1985) 111 [INSPIRE]. · doi:10.1007/BF02724227
[20] G.M. Shore and G. Veneziano, Current algebra and supersymmetry, Int. J. Mod. Phys.A 1 (1986) 499 [INSPIRE]. · doi:10.1142/S0217751X86000228
[21] A. Schwimmer and S. Theisen, Spontaneous breaking of conformal invariance and trace anomaly matching, Nucl. Phys.B 847 (2011) 590 [arXiv:1011.0696] [INSPIRE]. · Zbl 1215.81103 · doi:10.1016/j.nuclphysb.2011.02.003
[22] J. Wess and J. Bagger, Supersymmetry and supergravity, Princeton University Press, Princeton U.S.A. (1992) [INSPIRE].
[23] I.L. Buchbinder and S.M. Kuzenko, Ideas and methods of supersymmetry and supergravity, IOP, Bristol U.K. (1998) [INSPIRE]. · Zbl 0924.53043
[24] K.A. Intriligator and B. Wecht, The exact superconformal R symmetry maximizes a, Nucl. Phys.B 667 (2003) 183 [hep-th/0304128] [INSPIRE]. · Zbl 1059.81602 · doi:10.1016/S0550-3213(03)00459-0
[25] V. Prochazka and R. Zwicky, in progress (2015).
[26] I.T. Drummond, Quantum field theory in a multimetric background, Phys. Rev.D 88 (2013) 025009 [arXiv:1303.3126] [INSPIRE].
[27] N. Arkani-Hamed and H. Murayama, Holomorphy, rescaling anomalies and exact β-functions in supersymmetric gauge theories, JHEP06 (2000) 030 [hep-th/9707133] [INSPIRE]. · Zbl 0989.81535 · doi:10.1088/1126-6708/2000/06/030
[28] V.A. Novikov, M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low function of supersymmetric Yang-Mills theories from instanton calculus, Nucl. Phys.B 229 (1983) 381 [INSPIRE]. · doi:10.1016/0550-3213(83)90338-3
[29] M.A. Shifman, A.I. Vainshtein and V.I. Zakharov, Exact Gell-Mann-Low function in supersymmetric electrodynamics, Phys. Lett.B 166 (1986) 334 [INSPIRE]. · doi:10.1016/0370-2693(86)90811-7
[30] M.A. Shifman and A.I. Vainshtein, Solution of the anomaly puzzle in SUSY gauge theories and the Wilson operator expansion, Nucl. Phys.B 277 (1986) 456 [Sov. Phys. JETP64 (1986) 428] [Zh. Eksp. Teor. Fiz.91 (1986) 723] [INSPIRE].
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.