×

Computation of three-dimensional multiphase flow dynamics by fully-coupled immersed flow (FCIF) solver. (English) Zbl 1380.76105

Summary: This work presents a fully-coupled immersed flow (FCIF) solver for the three-dimensional simulation of fluid-fluid interaction by coupling two distinct flow solvers using an immersed boundary (IB) method. The FCIF solver captures dynamic interactions between two fluids with disparate flow properties, while retaining the desirable simplicity of non-boundary-conforming grids. For illustration, we couple an IB-based unsteady Reynolds averaged Navier Stokes (uRANS) simulator with a depth-integrated (long-wave) solver for the application of slug development with turbulent gas and laminar liquid. We perform a series of validations including turbulent/laminar flows over prescribed wavy boundaries and freely-evolving viscous fluids. These confirm the effectiveness and accuracy of both one-way and two-way coupling in the FCIF solver. Finally, we present a simulation example of the evolution from a stratified turbulent/laminar flow through the initiation of a slug that nearly bridges the channel. The results show both the interfacial wave dynamics excited by the turbulent gas forcing and the influence of the liquid on the gas turbulence. These results demonstrate that the FCIF solver effectively captures the essential physics of gas-liquid interaction and can serve as a useful tool for the mechanistic study of slug generation in two-phase gas/liquid flows in channels and pipes.

MSC:

76M25 Other numerical methods (fluid mechanics) (MSC2010)
76T10 Liquid-gas two-phase flows, bubbly flows

Software:

hypre
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Gokcal, B.; Wang, Q.; Zhang, H.; Sarica, C., Effects of high oil viscosity on oil/gas flow behavior in horizontal pipes, SPE Projects, Facilities Construction, 3, 02, 1-11 (2008)
[2] Janssen, P., The Interaction of Ocean Waves and Wind (2004), Cambridge University Press
[3] Yang, D.; Shen, L., Simulation of viscous flows with undulatory boundaries: part 2. Coupling with other solvers for two-fluid computations, J. Comput. Phys., 230, 14, 5510-5531 (2011) · Zbl 1419.76486
[4] Fulgosi, M.; Lakehal, D.; Banerjee, S.; Angelis, V. D., Direct numerical simulation of turbulence in a sheared air-water flow with a deformable interface, J. Fluid Mech., 482, 319-345 (2003) · Zbl 1119.76343
[5] Lavalle, G.; Vila, J.; Blanchard, G.; Laurent, C.; Charru, F., A numerical reduced model for thin liquid films sheared by a gas flow, J. Comput. Phys., 301, 119-140 (2015) · Zbl 1349.76622
[6] Campbell, B.; Hendrickson, K.; Liu, Y., Nonlinear coupling of interfacial instabilities with resonant wave interactions in horizontal two-fluid plane Couette-Poiseuille flows: numerical and physical observations, J. Fluid Mech., 809, 438-479 (2016) · Zbl 1383.76462
[7] Li, J.; Renardy, Y.; Renardy, M., A numerical study of periodic disturbances on two-layer Couette flow, Phys. Fluids, 10, 12, 3056-3071 (1998)
[8] Dietze, G.; Ruyer-Quil, C., Wavy liquid films in interaction with a confined laminar gas flow, J. Fluid Mech., 722, 348-393 (2013) · Zbl 1287.76050
[9] Adalsteinsson, D.; Sethian, J., A fast level set method for propagating interfaces, J. Comput. Phys., 118, 2, 269-277 (1995) · Zbl 0823.65137
[10] Sethian, J.; Smereka, P., Level set methods for fluid interfaces, Annu. Rev. Fluid Mech., 35, 1, 341-372 (2003) · Zbl 1041.76057
[11] Valluri, P.; Spelt, P.; Lawrence, C.; Hewitt, G., Numerical simulation of the onset of slug initiation in laminar horizontal channel flow, Int. J. Multiph. Flow, 34, 2, 206-225 (2008)
[12] Unverdi, S.; Tryggvason, G., A front-tracking method for viscous, incompressible, multi-fluid flows, J. Comput. Phys., 100, 1, 25-37 (1992) · Zbl 0758.76047
[13] Zhang, J.; Miksis, M.; Bankoff, S.; Tryggvason, G., Nonlinear dynamics of an interface in an inclined channel, Phys. Fluids, 14, 6, 1877-1885 (2002) · Zbl 1185.76419
[14] Sussman, M.; Puckett, E., A coupled level set and volume-of-fluid method for computing 3d and axisymmetric incompressible two-phase flows, J. Comput. Phys., 162, 2, 301-337 (2000) · Zbl 0977.76071
[15] Maertens, A.; Weymouth, G., Accurate Cartesian-grid simulations of near-body flows at intermediate Reynolds numbers, Comput. Methods Appl. Mech. Eng., 283, 106-129 (2015) · Zbl 1423.76180
[16] Peskin, C., Flow patterns around heart valves: a numerical method, J. Comput. Phys., 10, 2, 252-271 (1972) · Zbl 0244.92002
[17] Mori, Y.; Peskin, C., Implicit second-order immersed boundary methods with boundary mass, Comput. Methods Appl. Mech. Eng., 197, 25, 2049-2067 (2008) · Zbl 1158.74533
[18] Hou, T.; Shi, Z., An efficient semi-implicit immersed boundary method for the Navier-Stokes equations, J. Comput. Phys., 227, 20, 8968-8991 (2008) · Zbl 1161.76048
[19] Uhlmann, M., An immersed boundary method with direct forcing for the simulation of particulate flows, J. Comput. Phys., 209, 2, 448-476 (2005) · Zbl 1138.76398
[20] Su, S.; Lai, M.; Lin, C., An immersed boundary technique for simulating complex flows with rigid boundary, Comput. Fluids, 36, 2, 313-324 (2007) · Zbl 1177.76299
[21] Angot, P.; Bruneau, C.; Fabrie, P., A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math., 81, 4, 497-520 (1999) · Zbl 0921.76168
[22] Kevlahan, N.; Ghidaglia, J., Computation of turbulent flow past an array of cylinders using a spectral method with Brinkman penalization, Eur. J. Mech. B, Fluids, 20, 3, 333-350 (2001) · Zbl 1020.76037
[23] Clarke, D.; Salast, M.; Hassan, H., Euler calculations for multielement airfoils using cartesian grids, AIAA J., 24, 3, 353-358 (1986) · Zbl 0587.76095
[24] Udaykumar, H.; Mittal, R.; Rampunggoon, P.; Khanna, A., A sharp interface cartesian grid method for simulating flows with complex moving boundaries, J. Comput. Phys., 174, 1, 345-380 (2001) · Zbl 1106.76428
[25] Ye, T.; Mittal, R.; Udaykumar, H.; Shyy, W., An accurate cartesian grid method for viscous incompressible flows with complex immersed boundaries, J. Comput. Phys., 156, 2, 209-240 (1999) · Zbl 0957.76043
[26] Fadlun, E.; Verzicco, R.; Orlandi, P.; Mohd-Yusof, J., Combined immersed-boundary finite-difference methods for three-dimensional complex flow simulations, J. Comput. Phys., 161, 1, 35-60 (2000) · Zbl 0972.76073
[27] Tseng, Y.; Ferziger, J., A ghost-cell immersed boundary method for flow in complex geometry, J. Comput. Phys., 192, 2, 593-623 (2003) · Zbl 1047.76575
[28] Ikeno, T.; Kajishima, T., Finite-difference immersed boundary method consistent with wall conditions for incompressible turbulent flow simulations, J. Comput. Phys., 226, 2, 1485-1508 (2007) · Zbl 1173.76374
[29] Ge, L.; Sotiropoulos, F., A numerical method for solving the 3d unsteady incompressible Navier-Stokes equations in curvilinear domains with complex immersed boundaries, J. Comput. Phys., 225, 2, 1782-1809 (2007) · Zbl 1213.76134
[30] Mittal, R.; Iaccarino, G., Immersed boundary methods, Annu. Rev. Fluid Mech., 37, 239-261 (2005) · Zbl 1117.76049
[31] Sotiropoulos, F.; Yang, X., Immersed boundary methods for simulating fluid-structure interaction, Prog. Aerosp. Sci., 65, 1-21 (2014)
[32] Marquez, J.; Trujillo, J., Overview: slug-flow characterization for heavy-oil fields, (SPE Latin American and Caribbean Petroleum Engineering Conference (2010), Society of Petroleum Engineers)
[33] Zhao, Y.; Yeung, H.; Zorgani, E.; Archibong, A.; Lao, L., High viscosity effects on characteristics of oil and gas two-phase flow in horizontal pipes, Chem. Eng. Sci., 95, 343-352 (2013)
[34] Weymouth, G.; Yue, D. K.P., Boundary data immersion method for cartesian-grid simulations of fluid-body interaction problems, J. Comput. Phys., 230, 16, 6233-6247 (2011) · Zbl 1419.76511
[35] Angelis, V.; Lombardi, P.; Banerjee, S., Direct numerical simulation of turbulent flow over a wavy wall, Phys. Fluids, 9, 8, 2429-2442 (1997)
[36] Liu, S.; Kermani, A.; Shen, L.; Yue, D., Investigation of coupled air-water turbulent boundary layers using direct numerical simulations, Phys. Fluids, 21, 6, Article 062108 pp. (2009) · Zbl 1183.76321
[37] Iaccarino, G.; Verzicco, R., Immersed boundary technique for turbulent flow simulations, Appl. Mech. Rev., 56, 3, 331-347 (2003)
[38] Palma, P. D.; Tullio, M. D.; Pascazio, G.; Napolitano, M., An immersed-boundary method for compressible viscous flows, Comput. Fluids, 35, 7, 693-702 (2006) · Zbl 1177.76306
[39] Wilcox, D., Reassessment of the scale-determining equation for advanced turbulence models, AIAA J., 26, 11, 1299-1310 (1988) · Zbl 0664.76057
[40] Wilcox, D., Turbulence Modeling for CFD, vol. 2 (1998), DCW Industries la Canada: DCW Industries la Canada CA
[41] Falgout, R.; Jones, J.; Yang, U., The design and implementation of hypre, a library of parallel high performance preconditioners, (Numerical Solution of Partial Differential Equations on Parallel Computers (2006), Springer), 267-294 · Zbl 1097.65059
[42] Falgout, R.; Yang, U., hypre: a library of high performance preconditioners, (Computational Science—ICCS 2002 (2002)), 632-641 · Zbl 1056.65046
[43] Falgout, R.; Jones, J., Multigrid on massively parallel architectures, (Multigrid Methods VI (2000), Springer), 101-107 · Zbl 0972.65110
[44] Benney, D., Long waves on liquid films, Stud. Appl. Math., 45, 1-4, 150-155 (1966) · Zbl 0148.23003
[45] Shkadov, V., Wave flow regimes of a thin layer of viscous fluid subject to gravity, Fluid Dyn., 2, 1, 29-34 (1967)
[46] C. Fletcher, Computational techniques for fluid dynamics, in: vol. 1: Fundamental and General Techniques, vol. 2: Specific Techniques for Different Flow Categories, Springer-Verlag, Berlin and New York, vol. 1, 418 p., vol. 2, 493 p., vol. 1, 1988.; C. Fletcher, Computational techniques for fluid dynamics, in: vol. 1: Fundamental and General Techniques, vol. 2: Specific Techniques for Different Flow Categories, Springer-Verlag, Berlin and New York, vol. 1, 418 p., vol. 2, 493 p., vol. 1, 1988. · Zbl 0706.76001
[47] Causin, P.; Gerbeau, J.; Nobile, F., Added-mass effect in the design of partitioned algorithms for fluid-structure problems, Comput. Methods Appl. Mech. Eng., 194, 42, 4506-4527 (2005) · Zbl 1101.74027
[48] Pirozzoli, S.; Bernardini, M.; Orlandi, P., Turbulence statistics in Couette flow at high Reynolds number, J. Fluid Mech., 758, 327-343 (2014)
[49] Avsarkisov, V.; Hoyas, S.; Oberlack, M.; García-Galache, J., Turbulent plane Couette flow at moderately high Reynolds number, J. Fluid Mech., 751, R1 (2014)
[50] Nisizima, S.; Yoshizawa, A., Turbulent channel and Couette flows using an anisotropic k-epsilon model, AIAA J., 25, 3, 414-420 (1987) · Zbl 0616.76072
[51] Robertson, J.; Johnson, H., Turbulence structure in plane Couette flow, J. Eng. Mech. Div., 96, 6, 1171-1182 (1970)
[52] Papadimitrakis, Y.; Street, R.; Hsu, E., The bursting sequence in the turbulent boundary layer over progressive, mechanically generated water waves, J. Fluid Mech., 193, 303-345 (1988)
[53] Komminaho, J.; Lundbladh, A.; Johansson, A., Very large structures in plane turbulent Couette flow, J. Fluid Mech., 320, 259-285 (1996) · Zbl 0875.76160
[54] Sullivan, P.; McWilliams, J.; Moeng, C., Simulation of turbulent flow over idealized water waves, J. Fluid Mech., 404, 47-85 (2000) · Zbl 0987.76044
[55] Náraigh, L.; Spelt, P.; Zaki, T., Turbulent flow over a liquid layer revisited: multi-equation turbulence modelling, J. Fluid Mech., 683, 357-394 (2011) · Zbl 1241.76384
[56] Lighthill, M., Physical interpretation of the mathematical theory of wave generation by wind, J. Fluid Mech., 14, 03, 385-398 (1962) · Zbl 0116.43301
[57] Kalliadasis, S.; Ruyer-Quil, C.; Scheid, B.; Velarde, M., Falling Liquid Films, vol. 176 (2011), Springer Science & Business Media · Zbl 1231.76001
[58] Andritsos, N.; William, L.; Hanratty, T., Effect of liquid viscosity on the stratified-slug transition in horizontal pipe flow, Int. J. Multiph. Flow, 15, 6, 877-892 (1989)
[59] Náraigh, L.; Spelt, P.; Matar, O.; Zaki, T., Interfacial instability in turbulent flow over a liquid film in a channel, Int. J. Multiph. Flow, 37, 7, 812-830 (2011)
[60] Jurman, L.; McCready, M., Study of waves on thin liquid films sheared by turbulent gas flows, Phys. Fluids A, Fluid Dyn., 1, 3, 522-536 (1989) · Zbl 1222.76103
[61] Andritsos, N.; Hanratty, T., Interfacial instabilities for horizontal gas-liquid flows in pipelines, Int. J. Multiph. Flow, 13, 5, 583-603 (1987)
[62] Fan, Z.; Lusseyran, F.; Hanratty, T., Initiation of slugs in horizontal gas-liquid flows, AIChE J., 39, 11, 1741-1753 (1993)
[63] Woods, B.; Hanratty, T., Influence of Froude number on physical processes determining frequency of slugging in horizontal gas-liquid flows, Int. J. Multiph. Flow, 25, 6, 1195-1223 (1999) · Zbl 1137.76786
[64] Lin, P.; Hanratty, T., Effect of pipe diameter on flow patterns for air-water flow in horizontal pipes, Int. J. Multiph. Flow, 13, 4, 549-563 (1987)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.