×

A Riemann problem based method for solving compressible and incompressible flows. (English) Zbl 1386.76174

Summary: A Riemann problem based method for solving two-medium flow including compressible and incompressible regions is presented. The material interface is advanced by front tracking method and the material interface boundary conditions are defined by modified ghost fluid method. A coupled compressible and incompressible Riemann problem constructed in the normal direction of the material interface is proposed to predict the interfacial states. With the ghost fluid states, the compressible and incompressible flows are solved by discontinuous Galerkin method. An incompressible discontinuous Galerkin method with nonuniform time step is also deduced. For shock wave formed in compressible flow, the numerical errors for the ghost fluid method in earlier works are analyzed and discussed in the numerical examples. It shows that the proposed method can provide reasonable results including shock wave location.

MSC:

76T10 Liquid-gas two-phase flows, bubbly flows
76M10 Finite element methods applied to problems in fluid mechanics

Software:

HE-E1GODF
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Abgrall, R., How to prevent pressure oscillations in multicomponent flow calculations: a quasi conservative approach, J. Comput. Phys., 125, 150-160 (1996) · Zbl 0847.76060
[2] Agemi, R., The incompressible limit of compressible fluid motions in a bounded domain, Proc. Jpn. Acad., 57, 291-293 (1981) · Zbl 0494.76061
[3] Asano, K., On the incompressible limit of the compressible Euler equation, Jpn. J. Appl. Math., 4, 455-488 (1987) · Zbl 0638.35012
[4] Bassi, F.; Crivellini, A.; Pietro, D. D.A.; Rebay, S., An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier-Stokes equations, J. Comput. Phys., 218, 794-915 (2006) · Zbl 1158.76313
[5] Caiden, R.; Fedkiw, R. P.; Anderson, C., A numerical method for two-phase flow consisting of separate compressible and incompressible regions, J. Comput. Phys., 166, 1-27 (2001) · Zbl 0990.76065
[6] Cockburn, B.; Kanschat, G.; Schötzau, D.; Schwab, C., Local discontinuous Galerkin methods for the Stokes system, SIAM J. Numer. Anal., 40, 319-343 (2002) · Zbl 1032.65127
[7] Cockburn, B.; Kanschat, G.; Schötzau, D., The local discontinuous Galerkin method for the Oseen equations, Math. Comput., 73, 569-593 (2003) · Zbl 1066.76036
[8] Cockburn, B.; Kanschat, G.; Schötzau, D., A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comput., 74, 1067-1095 (2005) · Zbl 1069.76029
[9] Cockburn, B.; Hou, S.; Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: the multidimensional case, Math. Comput., 54, 545-581 (1990) · Zbl 0695.65066
[10] Cockburn, B.; Lin, S.-Y.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one dimensional systems, J. Comput. Phys., 84, 90-113 (1989) · Zbl 0677.65093
[11] Cockburn, B.; Shu, C.-W., TVB Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws II: general framework, Math. Comput., 52, 411-435 (1989) · Zbl 0662.65083
[12] Cockburn, B.; Shu, C.-W., The Runge-Kutta local projection P1-discontinuous Galerkin finite element method for scalar conservation laws, Math. Model. Numer. Anal., 25, 337-361 (1991) · Zbl 0732.65094
[13] Cockburn, B.; Shu, C.-W., The Runge-Kutta discontinuous Galerkin method for conservation laws V: multidimensional systems, J. Comput. Phys., 141, 199-224 (1998) · Zbl 0920.65059
[14] Fedkiw, R. P., Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method, J. Comput. Phys., 175, 200-224 (2002) · Zbl 1039.76050
[15] Fedkiw, R. P.; Aslam, T.; Merriman, B.; Osher, S., A non-oscillatory Eulerian approach to interfaces in multimaterial flows (the ghost fluid method), J. Comput. Phys., 152, 457-492 (1999) · Zbl 0957.76052
[16] Ferrer, E.; Willden, R. H.J., A high order discontinuous Galerkin finite element solver for the incompressible Navier-Stokes equations, Comput. Fluids, 46, 224-230 (2011) · Zbl 1431.76011
[17] Gibou, F.; Chen, L.; Nguyen, D.; Banerjee, S., A level set based sharp interface method for the multiphase incompressible Navier-Stokes equations with phase change, J. Comput. Phys., 222, 536-555 (2007) · Zbl 1158.76403
[18] Girault, V.; Wheeler, F., Discontinuous Galerkin methods, Comput. Methods Appl. Sci., 16, 3-26 (2008) · Zbl 1149.65323
[19] Glimm, J.; Grove, J. W.; Li, X. L.; Shyue, K.-M.; Zeng, Y.; Zhang, Q., Three-dimensional front tracking, SIAM J. Sci. Comput., 19, 703-727 (1998) · Zbl 0912.65075
[20] Glimm, J.; Grove, J. W.; Li, X. L.; Zhao, N., Simple front tracking, Contemp. Math., 238, 133-149 (1999) · Zbl 0960.76058
[21] Glimm, J.; Grove, J. W.; Zhang, Y., Interface tracking for axisymmetric flows, SIAM J. Sci. Comput., 24, 208-236 (2002) · Zbl 1062.76034
[22] Guzmán, J.; Sequeira, F. A.; Shu, C.-W., H(div) conforming and DG methods for incompressible Euler’s equations, IMA J. Numer. Anal. (2016), in press
[23] Hu, X. Y.; Adams, N. A., An incompressible multi-phase SPH method, J. Comput. Phys., 227, 264-278 (2007) · Zbl 1126.76045
[24] Karni, S., Multicomponent flow calculations by a consistent primitive algorithm, J. Comput. Phys., 112, 31-43 (1994) · Zbl 0811.76044
[25] Karniadakis, G. E.; Israeli, M.; Orszag, S. A., High-order splitting methods for the incompressible Navier-Stokes equations, J. Comput. Phys., 97, 414-443 (1991) · Zbl 0738.76050
[26] Liu, J.-G.; Shu, C.-W., A high-order discontinuous Galerkin method for 2D incompressible flows, J. Comput. Phys., 160, 577-596 (2000) · Zbl 0963.76069
[27] Liu, T. G.; Khoo, B. C.; Yeo, K. S., The simulation of compressible multi-medium flow. I. A new methodology with test applications to 1D gas-gas and gas-water cases, Comput. Fluids, 30, 291-314 (2001) · Zbl 1052.76046
[28] Liu, T. G.; Khoo, B. C.; Yeo, K. S., Ghost fluid method for strong shock impacting on material interface, J. Comput. Phys., 190, 651-681 (2003) · Zbl 1076.76592
[29] Lu, H. T.; Zhu, J.; Wang, C. W.; Zhao, N., Runge-Kutta discontinuous Galerkin method with front tracking method for solving the compressible two-medium flow on unstructured meshes, Adv. Appl. Math. Mech., 9, 1-19 (2017)
[30] Lu, H. T.; Zhu, J.; Wang, D. H.; Zhao, N., Runge-Kutta discontinuous Galerkin method with front tracking method for solving the compressible two-medium flow, Comput. Fluids, 126, 1-11 (2016) · Zbl 1390.76335
[31] Osher, S.; Fedkiw, R. P., Level set methods: an overview and some recent results, J. Comput. Phys., 169, 463-502 (2001) · Zbl 0988.65093
[32] Qiu, J.; Liu, T. G.; Khoo, B. C., Simulations of compressible two-medium flow by Runge-Kutta discontinuous Galerkin methods with the ghost fluid method, Commun. Comput. Phys., 3, 479-504 (2008) · Zbl 1195.76262
[33] Riviere, B., Discontinuous Galerkin methods for solving elliptic and parabolic equations: theory and implementation, SIAM Front Appl. Math. (2008) · Zbl 1153.65112
[34] Saurel, R.; Abgrall, R., A simple method for compressible multifluid flows, SIAM J. Sci. Comput., 21, 1115-1145 (1999) · Zbl 0957.76057
[35] Shahbazi, K.; Fischer, P. F.; Ethier, C. R., A high-order discontinuous Galerkin method for the unsteady incompressible Navier-Stokes equations, J. Comput. Phys., 222, 391-407 (2007) · Zbl 1216.76034
[36] Shu, C.-W., TVB uniformly high-order schemes for conservation laws, Math. Comput., 49, 105-121 (1987) · Zbl 0628.65075
[37] Shu, C.-W.; Osher, S., Efficient implementation of essentially non-oscillatory shock capturing schemes, J. Comput. Phys., 77, 439-471 (1988) · Zbl 0653.65072
[38] Sussman, M.; Smith, K. M.; Hussaini, M. Y.; Ohta, M.; Zhi-Wei, R., A sharp interface method for incompressible two-phase flows, J. Comput. Phys., 221, 469-505 (2007) · Zbl 1194.76219
[39] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics: A Practical Introduction (1997), Springer: Springer Berlin, New York · Zbl 0888.76001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.