×

Fermionic spectral functions in backreacting p-wave superconductors at finite temperature. (English) Zbl 1378.81118

Summary: We investigate the spectral function of fermions in a p-wave superconducting state, at finite both temperature and gravitational coupling, using the AdS/CFT correspondence and extending previous research. We found that, for any coupling below a critical value, the system behaves as its zero temperature limit. By increasing the coupling, the “peak-dip-hump” structure that characterizes the spectral function at fixed momenta disappears. In the region where the normal/superconductor phase transition is first order, the presence of a non-zero order parameter is reflected in the absence of rotational symmetry in the fermionic spectral function at the critical temperature.

MSC:

81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories
83C57 Black holes
80A10 Classical and relativistic thermodynamics
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] S. Sachdev, Quantum phase transitions of antiferromagnets and the cuprate superconductors, Lect. Notes Phys.843 (2012) 1 [arXiv:1002.3823] [INSPIRE]. · doi:10.1007/978-3-642-10449-7_1
[2] A. Damascelli, Z. Hussain and Z.X. Shen, Angle-resolved photoemission studies of the cuprate superconductors, Rev. Mod. Phys.75 (2003) 473 [INSPIRE]. · doi:10.1103/RevModPhys.75.473
[3] M. Sigrist and K. Ueda, Phenomenological theory of unconventional superconductivity, Rev. Mod. Phys.63 (1991) 239 [INSPIRE]. · doi:10.1103/RevModPhys.63.239
[4] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Building a holographic superconductor, Phys. Rev. Lett.101 (2008) 031601 [arXiv:0803.3295] [INSPIRE]. · Zbl 1404.82086 · doi:10.1103/PhysRevLett.101.031601
[5] S.A. Hartnoll, C.P. Herzog and G.T. Horowitz, Holographic superconductors, JHEP12 (2008) 015 [arXiv:0810.1563] [INSPIRE]. · Zbl 1329.81390 · doi:10.1088/1126-6708/2008/12/015
[6] S.S. Gubser and S.S. Pufu, The gravity dual of a p-wave superconductor, JHEP11 (2008) 033 [arXiv:0805.2960] [INSPIRE]. · doi:10.1088/1126-6708/2008/11/033
[7] S.S. Gubser, TASI lectures: collisions in anti-de Sitter space, conformal symmetry and holographic superconductors, arXiv:1012.5312 [INSPIRE]. · Zbl 1271.81129
[8] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J. Theor. Phys.38 (1999) 1113 [hep-th/9711200] [INSPIRE]. · Zbl 0969.81047 · doi:10.1023/A:1026654312961
[9] S.S. Gubser, I.R. Klebanov and A.M. Polyakov, Gauge theory correlators from noncritical string theory, Phys. Lett.B 428 (1998) 105 [hep-th/9802109] [INSPIRE]. · Zbl 1355.81126 · doi:10.1016/S0370-2693(98)00377-3
[10] E. Witten, Anti-de Sitter space and holography, Adv. Theor. Math. Phys.2 (1998) 253 [hep-th/9802150] [INSPIRE]. · Zbl 0914.53048 · doi:10.4310/ATMP.1998.v2.n2.a2
[11] S.A. Hartnoll, Lectures on holographic methods for condensed matter physics, Class. Quant. Grav.26 (2009) 224002 [arXiv:0903.3246] [INSPIRE]. · Zbl 1181.83003 · doi:10.1088/0264-9381/26/22/224002
[12] S.S. Gubser, Phase transitions near black hole horizons, Class. Quant. Grav.22 (2005) 5121 [hep-th/0505189] [INSPIRE]. · Zbl 1087.83044 · doi:10.1088/0264-9381/22/23/013
[13] S.S. Gubser, Breaking an Abelian gauge symmetry near a black hole horizon, Phys. Rev.D 78 (2008) 065034 [arXiv:0801.2977] [INSPIRE].
[14] M. Ammon, J. Erdmenger, V. Grass, P. Kerner and A. O’Bannon, On holographic p-wave superfluids with back-reaction, Phys. Lett.B 686 (2010) 192 [arXiv:0912.3515] [INSPIRE]. · doi:10.1016/j.physletb.2010.02.021
[15] S.S. Gubser, F.D. Rocha and A. Yarom, Fermion correlators in non-Abelian holographic superconductors, JHEP11 (2010) 085 [arXiv:1002.4416] [INSPIRE]. · Zbl 1294.82039 · doi:10.1007/JHEP11(2010)085
[16] R.E. Arias and I.S. Landea, Backreacting p-wave superconductors, JHEP01 (2013) 157 [arXiv:1210.6823] [INSPIRE]. · doi:10.1007/JHEP01(2013)157
[17] C.P. Herzog, K.-W. Huang and R. Vaz, Linear resistivity from non-Abelian black holes, JHEP11 (2014) 066 [arXiv:1405.3714] [INSPIRE]. · Zbl 1333.83093 · doi:10.1007/JHEP11(2014)066
[18] S.-S. Lee, A non-Fermi liquid from a charged black hole: a critical Fermi ball, Phys. Rev.D 79 (2009) 086006 [arXiv:0809.3402] [INSPIRE].
[19] H. Liu, J. McGreevy and D. Vegh, Non-Fermi liquids from holography, Phys. Rev.D 83 (2011) 065029 [arXiv:0903.2477] [INSPIRE].
[20] T. Faulkner, H. Liu, J. McGreevy and D. Vegh, Emergent quantum criticality, Fermi surfaces and AdS2, Phys. Rev.D 83 (2011) 125002 [arXiv:0907.2694] [INSPIRE].
[21] M. Cubrovic, J. Zaanen and K. Schalm, String theory, quantum phase transitions and the emergent Fermi-liquid, Science325 (2009) 439 [arXiv:0904.1993] [INSPIRE]. · Zbl 1226.81177 · doi:10.1126/science.1174962
[22] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Holographic non-Fermi liquid fixed points, Phil. Trans. Roy. Soc.A 369 (2011) 1640 [arXiv:1101.0597] [INSPIRE]. · Zbl 1219.81211 · doi:10.1098/rsta.2010.0354
[23] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, From black holes to strange metals, arXiv:1003.1728 [INSPIRE]. · Zbl 1214.81182
[24] T. Faulkner, N. Iqbal, H. Liu, J. McGreevy and D. Vegh, Charge transport by holographic Fermi surfaces, Phys. Rev.D 88 (2013) 045016 [arXiv:1306.6396] [INSPIRE].
[25] N. Iqbal, H. Liu and M. Mezei, Lectures on holographic non-Fermi liquids and quantum phase transitions, arXiv:1110.3814 [INSPIRE]. · Zbl 1162.81412
[26] J. Zaanen, Y.W. Sun, Y. Liu and K. Schalm, The AdS/CMT manual for plumbers and electricians, Universiteit Leiden, Leiden The Netherlands, 15 October 2012.
[27] J.-W. Chen, Y.-J. Kao and W.-Y. Wen, Peak-dip-hump from holographic superconductivity, Phys. Rev.D 82 (2010) 026007 [arXiv:0911.2821] [INSPIRE].
[28] P. Basu, J. He, A. Mukherjee, M. Rozali and H.-H. Shieh, Comments on non-Fermi liquids in the presence of a condensate, Can. J. Phys.89 (2011) 231 [arXiv:1002.4929] [INSPIRE]. · doi:10.1139/P10-123
[29] T. Faulkner, G.T. Horowitz, J. McGreevy, M.M. Roberts and D. Vegh, Photoemission ‘experiments’ on holographic superconductors, JHEP03 (2010) 121 [arXiv:0911.3402] [INSPIRE]. · Zbl 1271.81129 · doi:10.1007/JHEP03(2010)121
[30] S.S. Gubser, F.D. Rocha and P. Talavera, Normalizable fermion modes in a holographic superconductor, JHEP10 (2010) 087 [arXiv:0911.3632] [INSPIRE]. · Zbl 1291.81250 · doi:10.1007/JHEP10(2010)087
[31] M. Ammon, J. Erdmenger, M. Kaminski and A. O’Bannon, Fermionic operator mixing in holographic p-wave superfluids, JHEP05 (2010) 053 [arXiv:1003.1134] [INSPIRE]. · Zbl 1287.81075 · doi:10.1007/JHEP05(2010)053
[32] N. Iqbal and H. Liu, Real-time response in AdS/CFT with application to spinors, Fortsch. Phys.57 (2009) 367 [arXiv:0903.2596] [INSPIRE]. · Zbl 1168.81390 · doi:10.1002/prop.200900057
[33] P. Basu, J. He, A. Mukherjee and H.-H. Shieh, Hard-gapped holographic superconductors, Phys. Lett.B 689 (2010) 45 [arXiv:0911.4999] [INSPIRE]. · doi:10.1016/j.physletb.2010.04.042
[34] G.L. Giordano and A.R. Lugo, Holographic phase transitions from higgsed, non-Abelian charged black holes, JHEP07 (2015) 172 [arXiv:1501.04033] [INSPIRE]. · Zbl 1388.83445 · doi:10.1007/JHEP07(2015)172
[35] A.R. Lugo, E.F. Moreno and F.A. Schaposnik, Holography and AdS4self-gravitating dyons, JHEP11 (2010) 081 [arXiv:1007.1482] [INSPIRE]. · Zbl 1294.83013 · doi:10.1007/JHEP11(2010)081
[36] A.R. Lugo, E.F. Moreno and F.A. Schaposnik, Holographic phase transition from dyons in an AdS black hole background, JHEP03 (2010) 013 [arXiv:1001.3378] [INSPIRE]. · Zbl 1271.81113 · doi:10.1007/JHEP03(2010)013
[37] M. Henningson and K. Sfetsos, Spinors and the AdS/CFT correspondence, Phys. Lett.B 431 (1998) 63 [hep-th/9803251] [INSPIRE]. · doi:10.1016/S0370-2693(98)00559-0
[38] M. Henneaux, Boundary terms in the AdS/CFT correspondence for spinor fields, in Mathematical methods in modern theoretical physics, Tbilisi Georgia, (1998), pg. 161 [hep-th/9902137] [INSPIRE].
[39] L.D. Landau, E.M. Lifshitz and L.P. Pitaevskii, Statistical physics, part 2, Pergamon Press, Oxford U.K., (1981).
[40] X. Arsiwalla, J. de Boer, K. Papadodimas and E. Verlinde, Degenerate stars and gravitational collapse in AdS/CFT, JHEP01 (2011) 144 [arXiv:1010.5784] [INSPIRE]. · Zbl 1214.81182 · doi:10.1007/JHEP01(2011)144
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.