×

A well-balanced scheme for the shallow-water equations with topography or Manning friction. (English) Zbl 1375.35389

Summary: We consider the shallow-water equations with Manning friction or topography, as well as a combination of both these source terms. The main purpose of this work concerns the derivation of a non-negativity preserving and well-balanced scheme that approximates solutions of the system and preserves the associated steady states, including the moving ones. In addition, the scheme has to deal with vanishing water heights and transitions between wet and dry areas. To address such issues, a particular attention is paid to the study of the steady states related to the friction source term. Then, a Godunov-type scheme is obtained by using a relevant average of the source terms in order to enforce the required well-balance property. An implicit treatment of both topography and friction source terms is also exhibited to improve the scheme while dealing with vanishing water heights. A second-order well-balanced MUSCL extension is designed, as well as an extension for the two-dimensional case. Numerical experiments are performed in order to highlight the properties of the scheme.

MSC:

35Q35 PDEs in connection with fluid mechanics
76M12 Finite volume methods applied to problems in fluid mechanics

Software:

HE-E1GODF; HLLE; MOOD; SWASHES
PDFBibTeX XMLCite
Full Text: DOI HAL

References:

[1] Audusse, E.; Bouchut, F.; Bristeau, M.-O.; Klein, R.; Perthame, B., A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. Sci. Comput., 25, 6, 2050-2065 (2004) · Zbl 1133.65308
[2] Audusse, E.; Chalons, C.; Ung, P., A simple well-balanced and positive numerical scheme for the shallow-water system, Commun. Math. Sci., 13, 5, 1317-1332 (2015) · Zbl 1327.76026
[3] Bermudez, A.; Vazquez, M. E., Upwind methods for hyperbolic conservation laws with source terms, Comput. Fluids, 23, 8, 1049-1071 (1994) · Zbl 0816.76052
[4] Berthon, C.; Chalons, C., A fully well-balanced, positive and entropy-satisfying Godunov-type method for the shallow-water equations, Math. Comput., 85, 299, 1281-1307 (2016) · Zbl 1382.76180
[5] Berthon, C.; Chalons, C.; Cornet, S.; Sperone, G., Fully well-balanced, positive and simple approximate Riemann solver for shallow water equations, Bull. Braz. Math. Soc., 47, 1, 117-130 (2016) · Zbl 1375.76096
[6] Berthon, C.; Crestetto, A.; Foucher, F., A well-balanced finite volume scheme for a mixed hyperbolic/parabolic system to model chemotaxis, J. Sci. Comput., 67, 2, 618-643 (2016) · Zbl 1350.65093
[7] Berthon, C.; Desveaux, V., An entropy preserving MOOD scheme for the Euler equations, Int. J. Finite Vol., 11 (2014) · Zbl 1490.65164
[8] Berthon, C.; Foucher, F., Efficient well-balanced hydrostatic upwind schemes for shallow-water equations, J. Comput. Phys., 231, 15, 4993-5015 (2012) · Zbl 1351.76095
[9] Berthon, C.; Marche, F.; Turpault, R., An efficient scheme on wet/dry transitions for shallow water equations with friction, Comput. Fluids, 48, 192-201 (2011) · Zbl 1271.76178
[10] Bouchut, F., Nonlinear Stability of Finite Volume Methods for Hyperbolic Conservation Laws and Well-Balanced Schemes for Sources, Frontiers in Mathematics (2004), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 1086.65091
[11] Castro, M. J.; Pardo Milanés, A.; Parés, C., Well-balanced numerical schemes based on a generalized hydrostatic reconstruction technique, Math. Models Methods Appl. Sci., 17, 12, 2055-2113 (2007) · Zbl 1137.76038
[12] Castro Díaz, M. J.; López-García, J. A.; Parés, C., High order exactly well-balanced numerical methods for shallow water systems, J. Comput. Phys., 246, 242-264 (2013) · Zbl 1349.76315
[13] Chalons, C.; Coquel, F.; Godlewski, E.; Raviart, P.-A.; Seguin, N., Godunov-type schemes for hyperbolic systems with parameter-dependent source. The case of Euler system with friction, Math. Models Methods Appl. Sci., 20, 11, 2109-2166 (2010) · Zbl 1213.35034
[14] Chertock, A.; Cui, S.; Kurganov, A.; Wu, T., Well-balanced positivity preserving central-upwind scheme for the shallow water system with friction terms, Int. J. Numer. Methods Fluids, 78, 6, 355-383 (2015)
[15] Chinnayya, A.; LeRoux, A.-Y.; Seguin, N., A well-balanced numerical scheme for the approximation of the shallow-water equations with topography: the resonance phenomenon, Int. J. Finite Vol., 1, 1, 33 (2004) · Zbl 1490.65167
[16] Chow, V. T., Open-Channel Hydraulics, McGraw-Hill Civil Engineering Series (1959), McGraw-Hill
[17] Clain, S.; Diot, S.; Loubère, R., A high-order finite volume method for systems of conservation laws—Multi-dimensional Optimal Order Detection (MOOD), J. Comput. Phys., 230, 10, 4028-4050 (2011) · Zbl 1218.65091
[18] Clain, S.; Figueiredo, J., The MOOD method for the non-conservative shallow-water system, Comput. & Fluids, 145, 99-128 (2017) · Zbl 1390.76415
[19] Delestre, O.; Lucas, C.; Ksinant, P.-A.; Darboux, F.; Laguerre, C.; Vo, T.-N.-T.; James, F.; Cordier, S., SWASHES: a compilation of shallow water analytic solutions for hydraulic and environmental studies, Int. J. Numer. Methods Fluids, 72, 3, 269-300 (2013) · Zbl 1455.76005
[20] Desveaux, V.; Zenk, M.; Berthon, C.; Klingenberg, C., A well-balanced scheme for the Euler equation with a gravitational potential, (Finite Volumes for Complex Applications. VII. Methods and Theoretical Aspects. Finite Volumes for Complex Applications. VII. Methods and Theoretical Aspects, Springer Proc. Math. Stat., vol. 77 (2014), Springer: Springer Cham), 217-226 · Zbl 1304.76027
[21] Fernández-Nieto, E. D.; Bresch, D.; Monnier, J., A consistent intermediate wave speed for a well-balanced HLLC solver, C. R. Math. Acad. Sci. Paris, 346, 13-14, 795-800 (2008) · Zbl 1151.76017
[22] Fjordholm, U. S.; Mishra, S.; Tadmor, E., Well-balanced and energy stable schemes for the shallow water equations with discontinuous topography, J. Comput. Phys., 230, 14, 5587-5609 (2011) · Zbl 1452.35149
[23] Gallardo, J. M.; Castro, M.; Parés, C.; González-Vida, J. M., On a well-balanced high-order finite volume scheme for the shallow water equations with bottom topography and dry areas, (Hyperbolic Problems: Theory, Numerics, Applications (2008), Springer: Springer Berlin), 259-270 · Zbl 1388.76175
[24] Gallouët, T.; Hérard, J.-M.; Seguin, N., Some approximate Godunov schemes to compute shallow-water equations with topography, Comput. & Fluids, 32, 4, 479-513 (2003) · Zbl 1084.76540
[25] Godlewski, E.; Raviart, P.-A., Numerical Approximation of Hyperbolic Systems of Conservation Laws, Applied Mathematical Sciences, vol. 118 (1996), Springer-Verlag: Springer-Verlag New York · Zbl 1063.65080
[26] Gosse, L., A well-balanced flux-vector splitting scheme designed for hyperbolic systems of conservation laws with source terms, Comput. Math. Appl., 39, 9-10, 135-159 (2000) · Zbl 0963.65090
[27] Gottlieb, S.; Shu, C.-W.; Tadmor, E., Strong stability-preserving high-order time discretization methods, SIAM Rev., 43, 1, 89-112 (2001) · Zbl 0967.65098
[28] Goutal, N.; Maurel, F., Proceedings of the 2nd Workshop on Dam-Break Wave Simulation (1997), Groupe Hydraulique Fluviale, Département Laboratoire National d’Hydraulique, Electricité de France, Technical report
[29] Greenberg, J. M.; LeRoux, A.-Y., A well-balanced scheme for the numerical processing of source terms in hyperbolic equations, SIAM J. Numer. Anal., 33, 1, 1-16 (1996) · Zbl 0876.65064
[30] Harten, A.; Lax, P. D.; van Leer, B., On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM Rev., 25, 1, 35-61 (1983) · Zbl 0565.65051
[31] Hu, X. Y.; Adams, N. A.; Shu, C.-W., Positivity-preserving method for high-order conservative schemes solving compressible Euler equations, J. Comput. Phys., 242, 169-180 (2013) · Zbl 1311.76088
[32] Jin, S., A steady-state capturing method for hyperbolic systems with geometrical source terms, ESAIM: M2AN, 35, 4, 631-645 (2001) · Zbl 1001.35083
[33] Käppeli, R.; Mishra, S., Well-balanced schemes for the Euler equations with gravitation, J. Comput. Phys., 259, 199-219 (2014) · Zbl 1349.76345
[34] LeVeque, R. J., Numerical Methods for Conservation Laws, Lectures in Mathematics ETH Zürich (1992), Birkhäuser Verlag: Birkhäuser Verlag Basel · Zbl 0847.65053
[35] LeVeque, R. J., Finite Volume Methods for Hyperbolic Problems, Cambridge Texts in Applied Mathematics (2002), Cambridge University Press: Cambridge University Press Cambridge · Zbl 1010.65040
[36] Liang, Q.; Marche, F., Numerical resolution of well-balanced shallow water equations with complex source terms, Adv. Water Resour., 32, 6, 873-884 (2009)
[37] Lukáčová-Medviďová, M.; Noelle, S.; Kraft, M., Well-balanced finite volume evolution Galerkin methods for the shallow water equations, J. Comput. Phys., 221, 1, 122-147 (2007) · Zbl 1123.76041
[38] Luo, J.; Xu, K.; Liu, N., A well-balanced symplecticity-preserving gas-kinetic scheme for hydrodynamic equations under gravitational field, SIAM J. Sci. Comput., 33, 5, 2356-2381 (2011) · Zbl 1232.76044
[39] Manning, R., On the flow of water in open channels and pipes, Trans. Inst. Civ. Eng. Irel., 20, 161-207 (1890)
[40] Michel-Dansac, V.; Berthon, C.; Clain, S.; Foucher, F., A well-balanced scheme for the shallow-water equations with topography, Comput. Math. Appl., 72, 3, 568-593 (2016) · Zbl 1359.76206
[41] Natalini, R.; Ribot, M.; Twarogowska, M., A well-balanced numerical scheme for a one dimensional quasilinear hyperbolic model of chemotaxis, Commun. Math. Sci., 12, 1, 13-39 (2014) · Zbl 1310.92008
[42] Nikolos, I. K.; Delis, A. I., An unstructured node-centered finite volume scheme for shallow water flows with wet-dry fronts over complex topography, Comput. Methods Appl. Mech. Eng., 198, 47-48, 3723-3750 (2009) · Zbl 1230.76035
[43] Noelle, S.; Xing, Y.; Shu, C.-W., High-order well-balanced finite volume WENO schemes for shallow water equation with moving water, J. Comput. Phys., 226, 1, 29-58 (2007) · Zbl 1120.76046
[44] Russo, G.; Khe, A., High order well balanced schemes for systems of balance laws, (Hyperbolic Problems: Theory, Numerics and Applications. Hyperbolic Problems: Theory, Numerics and Applications, Proc. Symp. Appl. Math., vol. 67 (2009), Amer. Math. Soc.: Amer. Math. Soc. Providence, RI), 919-928 · Zbl 1407.76088
[45] Toro, E. F., Riemann Solvers and Numerical Methods for Fluid Dynamics. A Practical Introduction (2009), Springer-Verlag: Springer-Verlag Berlin · Zbl 1227.76006
[46] Toro, E. F.; Spruce, M.; Speares, W., Restoration of the contact surface in the HLL-Riemann solver, Shock Waves, 4, 1, 25-34 (1994) · Zbl 0811.76053
[47] van Leer, B., Towards the ultimate conservative difference scheme, V. A second order sequel to Godunov’s method, J. Comput. Phys., 32, 101-136 (1979) · Zbl 1364.65223
[48] van Leer, B., On the relation between the upwind-differencing schemes of Godunov, Engquist-Osher and Roe, SIAM J. Sci. Stat. Comput., 5, 1, 1-20 (1984) · Zbl 0547.65065
[49] Xing, Y., Exactly well-balanced discontinuous Galerkin methods for the shallow water equations with moving water equilibrium, J. Comput. Phys., 257(part A), 536-553 (2014) · Zbl 1349.76289
[50] Xing, Y.; Shu, C.-W.; Noelle, S., On the advantage of well-balanced schemes for moving-water equilibria of the shallow water equations, J. Sci. Comput., 48, 1-3, 339-349 (2011) · Zbl 1409.76086
[51] Xu, K., A well-balanced gas-kinetic scheme for the shallow-water equations with source terms, J. Comput. Phys., 178, 2, 533-562 (2002) · Zbl 1017.76071
[52] Xu, K.; Luo, J.; Chen, S., A well-balanced kinetic scheme for gas dynamic equations under gravitational field, Adv. Appl. Math. Mech., 2, 2, 200-210 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.