×

Admissible states and physical-constraints-preserving schemes for relativistic magnetohydrodynamic equations. (English) Zbl 1371.76096

Summary: This paper first studies the admissible state set \(\mathcal{G}\) of relativistic magnetohydrodynamics (RMHD). It paves a way for developing physical-constraints-preserving (PCP) schemes for the RMHD equations with the solutions in \(\mathcal{G}\). To overcome the difficulties arising from the extremely strong nonlinearities and no explicit formulas of the primitive variables and the flux vectors with respect to the conservative vector, two equivalent forms of \(\mathcal{G}\) with explicit constraints on the conservative vector are skillfully discovered. The first is derived by analyzing roots of several polynomials and transferring successively them, and further used to prove the convexity of \(\mathcal{G}\) with the aid of semi-positive definiteness of the second fundamental form of a hypersurface. While the second is derived based on the convexity, and then used to show the orthogonal invariance of \(\mathcal{G}\). The Lax-Friedrichs (LxF) splitting property does not hold generally for the nonzero magnetic field, but by a constructive inequality and pivotal techniques, we discover the generalized LxF splitting properties, combining the convex combination of some LxF splitting terms with a discrete divergence-free condition of the magnetic field. Based on the above analyses, several 1D and 2D PCP schemes are then studied. In the 1D case, a first-order accurate LxF-type scheme is first proved to be PCP under the Courant-Friedrichs-Lewy (CFL) condition, and then the high-order accurate PCP schemes are proposed via a PCP limiter. In the 2D case, the discrete divergence-free condition and PCP property are analyzed for a first-order accurate LxF-type scheme, and two sufficient conditions are derived for high-order accurate PCP schemes. Our analysis reveals in theory for the first time that the discrete divergence-free condition is closely connected with the PCP property. Several numerical examples demonstrate the theoretical findings and the performance of numerical schemes.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76Y05 Quantum hydrodynamics and relativistic hydrodynamics
76W05 Magnetohydrodynamics and electrohydrodynamics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Software:

ECHO
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] Anderson, M., Hirschmann, E. W., Liebling, S. L. and Neilsen, D., Relativistic MHD with adaptive mesh refinement, Class. Quantum Grav.23 (2006) 6503-6524. · Zbl 1133.83343
[2] Antón, L., Miralles, J. A., Martí, J. M., Ibáñez, J. M., Aloy, M. A. and Mimica, P., Relativistic magnetohydrodynamics: Renormalized eigenvectors and full wave decomposition Riemann solver, Astrophys. J. Suppl. Ser.188 (2010) 1-31.
[3] Balsara, D. S., Total variation diminishing scheme for relativistic magnetohydrodynamics, Astrophys. J. Suppl. Ser.132 (2001) 83-101.
[4] Balsara, D. S., Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction, Astrophys. J. Suppl. Ser.151 (2004) 149-184.
[5] Balsara, D. S., Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics, J. Comput. Phys.228 (2009) 5040-5056. · Zbl 1280.76030
[6] Balsara, D. S., Self-adjusting, positivity preserving high order schemes for hydrodynamics and magnetohydrodynamics, J. Comput. Phys.231 (2012) 7504-7517.
[7] Balsara, D. S. and Kim, J., A subluminal relativistic magnetohydrodynamics scheme with ADER-WENO predictor and multidimensional Riemann solver-based corrector, J. Comput. Phys.312 (2016) 357-384. · Zbl 1351.76157
[8] Borges, R., Carmona, M., Costa, B. and Don, W. S., An improved weighted essentially nonoscillatory scheme for hyperbolic conservation laws, J. Comput. Phys.227 (2008) 3101-3211. · Zbl 1136.65076
[9] Brackbill, J. U. and Barnes, D. C., The effect of nonzero \(####\textbf{B}\) on the numerical solution of the magnetohydrodynamic equations, J. Comput. Phys.35 (1980) 426-430. · Zbl 0429.76079
[10] Cheng, Y., Li, F. Y., Qiu, J. X. and Xu, L. W., Positivity-preserving DG and central DG methods for ideal MHD equations, J. Comput. Phys.238 (2013) 255-280. · Zbl 1286.76162
[11] Christlieb, A. J., Liu, Y., Tang, Q. and Xu, Z. F., Positivity-preserving finite difference weighted ENO schemes with constrained transport for ideal magnetohydrodynamic equations, SIAM J. Sci. Comput.37 (2015) A1825-A1845. · Zbl 1329.76225
[12] Cissoko, M., Detonation waves in relativistic hydrodynamics, Phys. Rev. D45 (1992) 1045-1052.
[13] Cockburn, B., Hu, S. C. and Shu, C.-W., The Runge-Kutta local projection discontinuous Galerkin finite element method for conservation laws IV: The multidimensional case, Math. Comput.54 (1990) 545-581. · Zbl 0695.65066
[14] Zanna, L. Del, Bucciantini, N. and Londrillo, P., An efficient shock-capturing central-type scheme for multidimensional relativistic flows II. Magnetohydrodynamics, Astron. Astrophys.400 (2003) 397-413. · Zbl 1222.76122
[15] Zanna, L. Del, Zanotti, O., Bucciantini, N. and Londrillo, P., ECHO: A Eulerian conservative high-order scheme for general relativistic magnetohydrodynamics and magnetodynamics, Astron. Astrophys.473 (2007) 11-30.
[16] Evans, C. R. and Hawley, J. F., Simulation of magnetodydrodynamic flows: A constrained transport method, Astrophys. J.332 (1988) 659-677.
[17] Font, J. A., Numerical hydrodynamics and magnetohydrodynamics in general relativity, Living Rev. Relativ.11 (2008) 7. · Zbl 1166.83003
[18] Friedrichs, K. O., On the laws of relativistic electro-magneto-fluid dynamics, Commun. Pure Appl. Math.27 (1974) 749-808. · Zbl 0308.76075
[19] Giacomazzo, B. and Rezzolla, L., The exact solution of the Riemann problem in relativistic magnetohydrodynamics, J. Fluid Mech.562 (2006) 223-259. · Zbl 1097.76073
[20] Gottlieb, S., Ketcheson, D. J. and Shu, C.-W., High order strong stability preserving time discretizations, J. Sci. Comput.38 (2009) 251-289. · Zbl 1203.65135
[21] He, P. and Tang, H. Z., An adaptive moving mesh method for two-dimensional relativistic magnetohydrodynamics, Comput. Fluids60 (2012) 1-20. · Zbl 1365.76337
[22] Honkkila, V. and Janhunen, P., HLLC solver for ideal relativistic MHD, J. Comput. Phys.223 (2007) 643-656. · Zbl 1111.76036
[23] Jonker, L. D., Immersions with semi-definite second fundamental forms, Canad. J. Math.27 (1975) 610-617. · Zbl 0328.53041
[24] Kim, J. and Balsara, D. S., A stable HLLC Riemann solver for relativistic magnetohydrodynamics, J. Comput. Phys.270 (2014) 634-639. · Zbl 1349.76618
[25] Komissarov, S. S., A Godunov-type scheme for relativistic magnetohydrodynamics, Mon. Not. Roy. Astron. Soc.303 (1999) 343-366.
[26] Krivodonova, L., Xin, J., Remacle, J.-F., Chevaugeon, N. and Flaherty, J. E., Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws, Appl. Numer. Math.48 (2004) 323-338. · Zbl 1038.65096
[27] Li, F. Y. and Shu, C.-W., Locally divergence-free discontinuous Galerkin methods for MHD equations, J. Sci. Comput.22 (2005) 413-442. · Zbl 1123.76341
[28] Li, F. Y., Xu, L. W. and Yakovlev, S., Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field, J. Comput. Phys.230 (2011) 4828-4847. · Zbl 1416.76117
[29] Martí, J. M. and Müller, E., Grid-based methods in relativistic hydrodynamics and magnetohydrodynamics, Living Rev. Comput. Astrophys.1 (2015) 3.
[30] Mignone, A. and Bodo, G., An HLLC Riemann solver for relativistic flows — II. Magnetohydrodynamics, Mon. Not. Roy. Astron. Soc.368 (2006) 1040-1054.
[31] Miyoshi, T. and Kusano, K., A multi-state HLL approximate Riemann solver for ideal magnetohydrodynamics, J. Comput. Phys.208 (2005) 315-344. · Zbl 1114.76378
[32] Newman, W. I. and Hamlin, N. D., Primitive variable determination in conservative relativistic magnetohydrodynamic simulations, SIAM J. Sci. Comput.36 (2014) B661-B683. · Zbl 1303.83002
[33] Noble, S. C., Gammie, C. F., McKinney, J. C. and Zanna, L. D., Primitive variable solvers for conservative general relativistic magnetohydrodynamics, Astrophys. J. Suppl. Ser.641 (2006) 626-637.
[34] Qamar, S. and Warnecke, G., A high-order kinetic flux-splitting method for the relativistic magnetohydrodynamics, J. Comput. Phys.205 (2005) 182-204. · Zbl 1087.76090
[35] Qiu, J. and Shu, C.-W., Runge-Kutta discontinuous Galerkin method using WENO limiters, SIAM J. Sci. Comput.26 (2005) 907-929. · Zbl 1077.65109
[36] Rossmanith, J. A., An unstaggered, high-resolution constrained transport method for magnetohydrodynamic flows, SIAM J. Sci. Comput.28 (2006) 1766-1797. · Zbl 1344.76092
[37] Tóth, G., The \(\nabla \cdot \textbf{B} = 0\) constraint in shock-capturing magnetohydrodynamics codes, J. Comput. Phys.161 (2000) 605-652. · Zbl 0980.76051
[38] van der Holst, B., Keppens, R. and Meliani, Z., A multidimensional grid-adaptive relativistic magnetofluid code, Comput. Phys. Comm.179 (2008) 617-627. · Zbl 1197.76085
[39] Wu, K. L., Design of provably physical-constraint-preserving methods for general relativistic hydrodynamics, Phys. Rev. D95 (2017) 103001.
[40] Wu, K. L. and Tang, H. Z., High-order accurate physical-constraints-preserving finite difference WENO schemes for special relativistic hydrodynamics, J. Comput. Phys.298 (2015) 539-564. · Zbl 1349.76550
[41] Wu, K. L. and Tang, H. Z., Physical-constraints-preserving central discontinuous Galerkin methods for special relativistic hydrodynamics with a general equation of state, Astrophys. J. Suppl. Ser.228 (2017) 3.
[42] Xing, Y., Zhang, X. and Shu, C.-W., Positivity-preserving high order well-balanced discontinuous Galerkin methods for the shallow water equations, Adv. Water Res.33 (2010) 1476-1493.
[43] Yang, H. and Li, F. Y., Stability analysis and error estimates of an exactly divergence-free method for the magnetic induction equations, ESAIM: Math. Model. Numer. Anal.50 (2016) 965-993. · Zbl 1348.78028
[44] Zanotti, O., Fambri, F. and Dumbser, M., Solving the relativistic magnetohydrodynamics equations with ADER discontinuous Galerkin methods, a posteriori subcell limiting and adaptive mesh refinement, Mon. Not. Roy. Astron. Soc.452 (2015) 3010-3029.
[45] Zhang, X. and Shu, C.-W., On maximum-principle-satisfying high order schemes for scalar conservation laws, J. Comput. Phys.229 (2010) 3091-3120. · Zbl 1187.65096
[46] Zhang, X. and Shu, C.-W., On positivity-preserving high-order discontinuous Galerkin schemes for compressible Euler equations on rectangular meshes, J. Comput. Phys.229 (2010) 8918-8934. · Zbl 1282.76128
[47] Zhang, X. and Shu, C.-W., Maximum-principle-satisfying and positivity-preserving high-order schemes for conservation laws: Survey and new developments, Proc. Roy. Soc. A467 (2011) 2752-2776. · Zbl 1222.65107
[48] Zhao, J. and Tang, H. Z., Runge-Kutta discontinuous Galerkin methods for the special relativistic magnetohydrodynamics, J. Comput. Phys.343 (2017) 33-72. · Zbl 1380.76048
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.