×

Hyperchaotic chameleon: fractional order FPGA implementation. (English) Zbl 1407.37052

Summary: There are many recent investigations on chaotic hidden attractors although hyperchaotic hidden attractor systems and their relationships have been less investigated. In this paper, we introduce a hyperchaotic system which can change between hidden attractor and self-excited attractor depending on the values of parameters. Dynamic properties of these systems are investigated. Fractional order models of these systems are derived and their bifurcation with fractional orders is discussed. Field programmable gate array (FPGA) implementations of the systems with their power and resource utilization are presented.

MSC:

37D45 Strange attractors, chaotic dynamics of systems with hyperbolic behavior
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Localization of hidden Chua’s attractors, Physics Letters A, 375, 23, 2230-2233 (2011) · Zbl 1242.34102 · doi:10.1016/j.physleta.2011.04.037
[2] Leonov, G. A.; Kuznetsov, N. V.; Vagaitsev, V. I., Hidden attractor in smooth Chua systems, Physica D. Nonlinear Phenomena, 241, 18, 1482-1486 (2012) · Zbl 1277.34052 · doi:10.1016/j.physd.2012.05.016
[3] Leonov, G. A.; Kuznetsov, N. V., Hidden attractors in dynamical systems. From hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman problems to hidden chaotic attractor in Chua circuits, International Journal of Bifurcation and Chaos, 23, 01 (2013) · Zbl 1270.34003 · doi:10.1142/S0218127413300024
[4] Leonov, G. A.; Kuznetsov, N. V.; Mokaev, T. N., Hidden attractor and homoclinic orbit in Lorenz-like system describing convective fluid motion in rotating cavity, Communications in Nonlinear Science and Numerical Simulation, 28, 1-3, 166-174 (2015) · Zbl 1510.37063 · doi:10.1016/j.cnsns.2015.04.007
[5] Leonov, G. A.; Kuznetsov, N. V.; Mokaev, T. N., Homoclinic orbits, and self-excited and hidden attractors in a Lorenz-like system describing convective fluid motion, The European Physical Journal Special Topics, 224, 8, 1421-1458 (2015) · doi:10.1140/epjst/e2015-02470-3
[6] Sharma, P. R.; Shrimali, M. D.; Prasad, A.; Kuznetsov, N. V.; Leonov, G. A., Control of multistability in hidden attractors, The European Physical Journal: Special Topics, 224, 8, 1485-1491 (2015) · doi:10.1140/epjst/e2015-02474-y
[7] Sharma, P. R.; Shrimali, M. D.; Prasad, A.; Kuznetsov, N. V.; Leonov, G. A., Controlling dynamics of hidden attractors, International Journal of Bifurcation and Chaos, 25, 4 (2015) · Zbl 1314.34134 · doi:10.1142/s0218127415500613
[8] Jafari, S.; Sprott, J. C.; Pham, V.-T.; Hashemi Golpayegani, S. M.; Homayoun Jafari, A., A new cost function for parameter estimation of chaotic systems using return maps as fingerprints, International Journal of Bifurcation and Chaos, 24, 10 (2014) · Zbl 1302.34027 · doi:10.1142/s021812741450134x
[9] Pham, V.-T.; Volos, C.; Jafari, S.; Wei, Z.; Wang, X., Constructing a novel no-equilibrium chaotic system, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 24, 5 (2014) · Zbl 1296.34114 · doi:10.1142/s0218127414500734
[10] Tahir, F. R.; Jafari, S.; Pham, V.-T.; Volos, C.; Wang, X., A novel no-equilibrium chaotic system with multiwing butterfly attractors, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 25, 4 (2015) · doi:10.1142/s021812741550056x
[11] Jafari, S.; Pham, V.-T.; Kapitaniak, T., Multiscroll chaotic sea obtained from a simple 3D system without equilibrium, International Journal of Bifurcation and Chaos, 26, 2 (2016) · Zbl 1334.34034 · doi:10.1142/s0218127416500310
[12] Lao, S.-K.; Shekofteh, Y.; Jafari, S.; Sprott, J. C., Cost function based on Gaussian mixture model for parameter estimation of a chaotic circuit with a hidden attractor, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 24, 1 (2014) · Zbl 1284.34022 · doi:10.1142/s0218127414500102
[13] Jafari, S.; Pham, V.-T.; Kapitaniak, T., Multiscroll chaotic sea obtained from a simple 3D system without equilibrium, International Journal of Bifurcation and Chaos, 26, 2 (2016) · Zbl 1334.34034 · doi:10.1142/s0218127416500310
[14] Pham, V.-T.; Vaidyanathan, S.; Volos, C.; Jafari, S.; Kingni, S. T., A no-equilibrium hyperchaotic system with a cubic nonlinear term, Optik, 127, 6, 3259-3265 (2016) · doi:10.1016/j.ijleo.2015.12.048
[15] Pham, V.-T.; Vaidyanathan, S.; Volos, C. K.; Jafari, S.; Kuznetsov, N. V.; Hoang, T. M., A novel memristive time-delay chaotic system without equilibrium points, European Physical Journal: Special Topics, 225, 1, 127-136 (2016) · doi:10.1140/epjst/e2016-02625-8
[16] Molaie, M.; Jafari, S.; Sprott, J. C.; Golpayegani, S. M. R. H., Simple chaotic flows with one stable equilibrium, International Journal of Bifurcation and Chaos, 23, 11 (2013) · Zbl 1284.34064 · doi:10.1142/s0218127413501885
[17] Kingni, S. T.; Jafari, S.; Simo, H.; Woafo, P., Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form, The European Physical Journal Plus, 129, 5, 1-16 (2014) · doi:10.1140/epjp/i2014-14076-4
[18] Molaie, M.; Jafari, S.; Sprott, J. C.; Hashemi Golpayegani, S. M., Simple chaotic flows with one stable equilibrium, International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 23, 11 (2013) · Zbl 1284.34064 · doi:10.1142/s0218127413501885
[19] Kingni, S. T.; Jafari, S.; Simo, H.; Woafo, P., Three-dimensional chaotic autonomous system with only one stable equilibrium: analysis, circuit design, parameter estimation, control, synchronization and its fractional-order form, The European Physical Journal Plus, 129, 5, article 76, 1-16 (2014) · doi:10.1140/epjp/i2014-14076-4
[20] Pham, V.; Jafari, S.; Volos, C.; Giakoumis, A.; Vaidyanathan, S.; Kapitaniak, T., A chaotic system with equilibria located on the rounded square loop and its circuit implementation, IEEE Transactions on Circuits and Systems II: Express Briefs, 63, 9, 878-882 (2016) · doi:10.1109/tcsii.2016.2534698
[21] Karthikeyan, R.; Prasina, A.; Babu, R.; Raghavendran, S., FPGA implementation of novel synchronization methodology for a new chaotic system, Indian Journal of Science and Technology, 8, 11 (2015) · doi:10.17485/ijst/2015/v8i11/71775
[22] Rajagopal, K.; Karthikeyan, A.; Srinivasan, A. K., FPGA implementation of novel fractional-order chaotic systems with two equilibriums and no equilibrium and its adaptive sliding mode synchronization, Nonlinear Dynamics. An International Journal of Nonlinear Dynamics and Chaos in Engineering Systems, 87, 4, 2281-2304 (2017) · doi:10.1007/s11071-016-3189-z
[23] Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J. J., Fractional Calculus: Models and Numerical Methods (2014), Singapore: World Scientific, Singapore
[24] Zhou, Y., Basic Theory of Fractional Differential Equations (2014), Singapore: World Scientific, Singapore · Zbl 1336.34001 · doi:10.1142/9069
[25] Diethelm, K., The Analysis of Fractional Differential Equations (2010), Berlin, Germany: Springer, Berlin, Germany · Zbl 1215.34001 · doi:10.1007/978-3-642-14574-2
[26] Pourmahmood Aghababa, M., Robust finite-time stabilization of fractional-order chaotic systems based on fractional lyapunov stability theory, Journal of Computational and Nonlinear Dynamics, 7, 2 (2012) · doi:10.1115/1.4005323
[27] Boroujeni, E. A.; Momeni, H. R., Non-fragile nonlinear fractional order observer design for a class of nonlinear fractional order systems, Signal Processing, 92, 10, 2365-2370 (2012) · doi:10.1016/j.sigpro.2012.02.009
[28] Zhang, R.; Gong, J., Synchronization of the fractional-order chaotic system via adaptive observer, Systems Science & Control Engineering, 2, 1, 751-754 (2014)
[29] Li, R. H.; Chen, W. S., Complex dynamical behavior and chaos control in fractional-order Lorenz-like systems, Chinese Physics B, 22, 4 (2013) · doi:10.1088/1674-1056/22/4/040503
[30] Cafagna, D.; Grassi, G., Fractional-order systems without equilibria: the first example of hyperchaos and its application to synchronization, Chinese Physics B, 24, 8 (2015) · doi:10.1088/1674-1056/24/8/080502
[31] Danca, M.-F.; Tang, W. K.; Chen, G., Suppressing chaos in a simplest autonomous memristor-based circuit of fractional order by periodic impulses, Chaos, Solitons & Fractals, 84, 31-40 (2016) · Zbl 1355.94099 · doi:10.1016/j.chaos.2015.12.018
[32] Petras, I., Methos for simulation of the fractional order chaotic systems, Acta Montanastica Slovaca, 11, 4, 273-277 (2006)
[33] Trzaska Zdzislaw, W., http://www.intechopen.com/download/pdf/21404, Rijeka, Croatia: InTech, Rijeka, Croatia
[34] Jafari, M. A.; Mliki, E.; Akgul, A.; Pham, V.; Kingni, S. T.; Wang, X.; Jafari, S., Chameleon: the most hidden chaotic flow, Nonlinear Dynamics, 1-15 (2017) · doi:10.1007/s11071-017-3378-4
[35] Li, Q.; Zeng, H.; Li, J., Hyperchaos in a 4D memristive circuit with infinitely many stable equilibria, Nonlinear Dynamics, 79, 4, 2295-2308 (2015) · doi:10.1007/s11071-014-1812-4
[36] Hong, Q.-H.; Zeng, Y.-C.; Li, Z.-J., Design and simulation of chaotic circuit for flux-controlled memristor and charge-controlled memristor, Acta Physica Sinica, 62, 23 (2013) · doi:10.7498/aps.62.230502
[37] Sampath, S.; Vaidyanathan, S.; Pham, V.-T., A novel 4-D hyperchaotic system with three quadratic nonlinearities, its adaptive control and circuit simulation, International Journal of Control Theory and Applications, 9, 1, 339-356 (2016)
[38] Rashtchi, V.; Nourazar, M., FPGA implementation of a real-time weak signal detector using a duffing oscillator, Circuits, Systems, and Signal Processing, 34, 10, 3101-3119 (2015) · doi:10.1007/s00034-014-9948-5
[39] Tlelo-Cuautle, E.; Rangel-Magdaleno, J. J.; Pano-Azucena, A. D.; Obeso-Rodelo, P. J.; Nunez-Perez, J. C., FPGA realization of multi-scroll chaotic oscillators, Communications in Nonlinear Science and Numerical Simulation, 27, 1-3, 66-80 (2015) · Zbl 1457.37052 · doi:10.1016/j.cnsns.2015.03.003
[40] Li, C.; Gong, Z.; Qian, D.; Chen, Y., On the bound of the Lyapunov exponents for the fractional differential systems, Chaos, 20, 1 (2010) · Zbl 1311.34016 · doi:10.1063/1.3314277
[41] Tavazoei, M. S.; Haeri, M., Unreliability of frequency-domain approximation in recognising chaos in fractional-order systems, IET Signal Processing, 1, 4, 171-181 (2007) · doi:10.1049/iet-spr:20070053
[42] Bao, B.; Jiang, P.; Wu, H.; Hu, F., Complex transient dynamics in periodically forced memristive Chua’s circuit, Nonlinear Dynamics, 79, 4, 2333-2343 (2015) · doi:10.1007/s11071-014-1815-1
[43] Pezeshki, C.; Elgar, S.; Krishna, R. C., Bispectral analysis of systems possessing chaotic motion, Journal of Sound and Vibration, 137, 3, 357-368 (1990) · Zbl 1235.74189 · doi:10.1016/0022-460x(90)90804-9
[44] Dudkowski, D.; Jafari, S.; Kapitaniak, T.; Kuznetsov, N. V.; Leonov, G. A.; Prasad, A., Hidden attractors in dynamical systems, Physics Reports. A Review Section of Physics Letters, 637, 1-50 (2016) · Zbl 1359.34054 · doi:10.1016/j.physrep.2016.05.002
[45] Tlelo-Cuautle, E.; Pano-Azucena, A. D.; Rangel-Magdaleno, J. J.; Carbajal-Gomez, V. H.; Rodriguez-Gomez, G., Generating a 50-scroll chaotic attractor at 66 MHz by using FPGAs, Nonlinear Dynamics, 85, 4, 2143-2157 (2016) · doi:10.1007/s11071-016-2820-3
[46] Wang, Q.; Yu, S.; Li, C., Theoretical design and FPGA-based implementation of higher-dimensional digital chaotic systems, IEEE Transactions on Circuits and Systems I-Regular Papers, 63, 3, 401-412 (2016) · Zbl 1469.94118 · doi:10.1109/tcsi.2016.2515398
[47] Dong, E.; Liang, Z.; Du, S.; Chen, Z., Topological horseshoe analysis on a four-wing chaotic attractor and its FPGA implement, Nonlinear Dynamics, 83, 1-2, 623-630 (2016) · doi:10.1007/s11071-015-2352-2
[48] Tlelo-Cuautle, E.; Carbajal-Gomez, V. H.; Obeso-Rodelo, P. J.; Rangel-Magdaleno, J. J.; Núñez-Pérez, J. C., FPGA realization of a chaotic communication system applied to image processing, Nonlinear Dynamics, 82, 4, 1879-1892 (2015) · Zbl 1441.94006 · doi:10.1007/s11071-015-2284-x
[49] Xu, Y.-M.; Wang, L.-D.; Duan, S.-K., A memristor-based chaotic system and its field programmable gate array implementation, Wuli Xuebao/Acta Physica Sinica, 65, 12 (2016) · doi:10.7498/aps.65.120503
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.