×

Spike-adding in parabolic bursters: the role of folded-saddle canards. (English) Zbl 1365.92019

Summary: The present work develops a new approach to studying parabolic bursting, and also proposes a novel four-dimensional canonical and polynomial-based parabolic burster. In addition to this new polynomial system, we also consider the conductance-based model of the Aplysia R15 neuron known as the plant model, and a reduction of this prototypical biophysical parabolic burster to three variables, including one phase variable, namely the Baer-Rinzel-Carillo (BRC) phase model. Revisiting these models from the perspective of slow-fast dynamics reveals that the number of spikes per burst may vary upon parameter changes, however the spike-adding process occurs in an explosive fashion that involves special solutions called canards. This spike-adding canard explosion phenomenon is analysed by using tools from geometric singular perturbation theory in tandem with numerical bifurcation techniques. We find that the bifurcation structure persists across all considered systems, that is, spikes within the burst are incremented via the crossing of an excitability threshold given by a particular type of canard orbit, namely the true canard of a folded-saddle singularity. However there can be a difference in the spike-adding transitions in parameter space from one case to another, according to whether the process is continuous or discontinuous, which depends upon the geometry of the folded-saddle canard. Using these findings, we construct a new polynomial approximation of the plant model, which retains all the key elements for parabolic bursting, including the spike-adding transitions mediated by folded-saddle canards. Finally, we briefly investigate the presence of spike-adding via canards in planar phase models of parabolic bursting, namely the theta model by Ermentrout and Kopell.

MSC:

92C20 Neural biology
34C60 Qualitative investigation and simulation of ordinary differential equation models
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Bertram, R.; Butte, M. J.; Kiemel, T.; Sherman, A., Topological and phenomenological classification of bursting oscillations, Bull. Math. Biol., 57, 3, 413-439 (1995) · Zbl 0813.92010
[2] Golubitsky, M.; Josic, K.; Kaper, T. J., An unfolding theory approach to bursting in fast-slow systems, (Broer, H. W.; Krauskopf, B.; Vegter, G., Global Analysis of Dynamical Systems: Festschrift Dedicated to Floris Takens on the Occasion of his 60th Birthday (2001), Institute of Physics Publ.), 277-308 · Zbl 1215.34043
[3] Izhikevich, E. M., Neural excitability, bursting and spiking, Int. J. Bifurcation Chaos, 10, 6, 1171-1266 (2000) · Zbl 1090.92505
[4] Izhikevich, E. M., Dynamical Systems in Neuroscience: The Geometry of Excitability (2007), MIT press
[5] Plant, R. E.; Kim, M., On the mechanism underlying bursting in the Aplysia abdominal ganglion R15 cell, Math. Biosci., 26, 3, 357-375 (1975) · Zbl 0324.92002
[6] Plant, R. E.; Kim, M., Mathematical description of a bursting pacemaker neuron by a modification of the Hodgkin-Huxley equations, Biophys. J., 16, 3, 227-244 (1976)
[7] Plant, R. E., Bifurcation and resonance in a model for bursting nerve cells, J. Math. Biol., 11, 1, 15-32 (1981) · Zbl 0449.92008
[8] Baer, S. M.; Rinzel, J.; Carillo, H., Analysis of an autonomous phase model for neuronal parabolic bursting, J. Math. Biol., 33, 3, 309-333 (1995) · Zbl 0812.92006
[10] Rinzel, J.; Lee, Y. S., Dissection of a model of neuronal parabolic bursting, J. Math. Biol., 25, 6, 653-675 (1987) · Zbl 0628.92016
[11] Smolen, P.; Terman, D.; Rinzel, J., Properties of a bursting model with two slow inhibitory variables, SIAM J. Appl. Math., 53, 3, 861-892 (1993) · Zbl 0785.34030
[12] Ermentrout, G. B.; Kopell, N. J., Parabolic bursting in an excitable system coupled with a slow oscillation, SIAM J. Appl. Math., 46, 2, 233-253 (1986) · Zbl 0594.58033
[13] Soto-Treviño, C.; Kopell, N.; Watson, D., Parabolic bursting revisited, J. Math. Biol., 35, 1, 114-128 (1996) · Zbl 0868.92010
[14] Rinzel, J.; Ermentrout, G. B., Analysis of neural excitability and oscillations, (Koch, C.; Segev, I., Methods in Neuronal Modeling, From Ions to Networks (1998), The MIT Press: The MIT Press Cambridge, MA), 251-293
[15] Jones, C. K.R. T., Geometric singular perturbation theory, (Johnson, R., Dynamical Systems. Dynamical Systems, Lecture Notes in Mathematics, vol. 1609 (1995), Springer: Springer Berlin), 44-118 · Zbl 0840.58040
[16] Mishchenko, E. F.; Rozov, N. K., Differential Equations with Small Parameters and Relaxation Oscillations (1980), Plenum Press: Plenum Press New York · Zbl 0482.34004
[17] Mishchenko, E. F.; Kolesov, Y. S.; Kolesov, A. Y.; Rozov, N. K., Asymptotic Methods in Singularly Perturbed Systems (1994), Consultants Bureau: Consultants Bureau New York · Zbl 0947.34046
[18] Kuznetsov, Y. A., Elements of Applied Bifurcation Theory (2004), Springer · Zbl 1082.37002
[19] Benoît, E., Canards et enlacements, Publ. Math. IHÉS, 72, 1, 63-91 (1990) · Zbl 0737.34018
[20] Szmolyan, P.; Wechselberger, M., Canards in \(R^3\), J. Differential Equations, 177, 2, 419-453 (2001) · Zbl 1007.34057
[21] Desroches, M.; Kaper, T. J.; Krupa, M., Mixed-mode bursting oscillations: Dynamics created by a slow passage through spike-adding canard explosion in a square-wave burster, Chaos, 23, 4, 046106 (2013) · Zbl 1375.92014
[22] Hindmarsh, J. L.; Rose, R. M., A model of neuronal bursting using three coupled first order differential equations., Proc. R. Soc. London, Ser. B, 221, 87-102 (1984)
[23] De Maesschalck, P.; Dumortier, F.; Roussarie, R., Canard-cycle transition at a fast-fast passage through a jump point, C. R. Acad. Sci. Math., 352, 1, 27-30 (2014) · Zbl 1287.34044
[24] Diener, M., The canard unchained or how fast/slow dynamical systems bifurcate, Math. Intelligencer, 6, 3, 38-49 (1984) · Zbl 0552.34055
[25] Guckenheimer, J.; Ilyashenko, Y., The duck and the devil: canards on the staircase, Mosc. Math. J., 1, 1, 27-47 (2001) · Zbl 0985.34035
[26] Schurov, I. V., Ducks on the torus: existence and uniqueness, J. Dyn. Control Syst., 16, 2, 267-300 (2010) · Zbl 1203.34081
[27] Schurov, I. V., Canard cycles in generic fast-slow systems on the torus, Trans. Moscow Math. Soc., 71, 175-207 (2010) · Zbl 1276.34047
[29] Plant, R. E., The effects of \(\text{calcium}^{+ +}\) on bursting neurons: A modelling study, Biophys. J., 21, 3, 217-237 (1978)
[30] Desroches, M.; Guckenheimer, J.; Krauskopf, B.; Kuehn, C.; Osinga, H. M.; Wechselberger, M., Mixed-mode oscillations with multiple time scales, SIAM Rev., 54, 2, 211-288 (2012) · Zbl 1250.34001
[31] Brøns, M.; Krupa, M.; Wechselberger, M., Mixed-mode oscillations due to the generalized canard mechanism, Fields Inst. Commun., 49, 39-63 (2006) · Zbl 1228.34063
[33] Krupa, M.; Szmolyan, P., Extending geometric singular perturbation theory to nonhyperbolic points—fold and canard points in two dimensions, SIAM J. Math. Anal., 33, 2, 286-314 (2001) · Zbl 1002.34046
[36] Ermentrout, G. B., Simulating, Analyzing, and Animating Dynamical Systems: A Guide to XPPAUT for Researchers and Students (2002), SIAM · Zbl 1003.68738
[37] Mitry, J.; McCarthy, M.; Kopell, N. J.; Wechselberger, M., Excitable neurons, firing threshold manifolds and canards, J. Math. Neurosci., 3, 12 (2013) · Zbl 1321.92046
[38] Desroches, M.; Krupa, M.; Rodrigues, S., Inflection, canards and excitability threshold in neuronal models, J. Math. Biol., 67, 4, 989-1017 (2013) · Zbl 1274.70045
[39] Fenichel, N., Geometric singular perturbation theory for ordinary differential equations, J. Differential Equations, 31, 1, 53-98 (1979) · Zbl 0476.34034
[40] Krupa, M.; Wechselberger, M., Local analysis near a folded saddle-node singularity, J. Differential Equations, 248, 12, 2841-2888 (2010) · Zbl 1198.34103
[41] Burke, J.; Desroches, M.; Barry, A. M.; Kaper, T. J.; Kramer, M. A., A showcase of torus canards in neuronal bursters, J. Math. Neurosci., 2, 3 (2012) · Zbl 1291.92025
[42] Kramer, M. A.; Traub, R. D.; Kopell, N. J., New dynamics in cerebellar purkinje cells: torus canards, Phys. Rev. Lett., 101, 6, 068103 (2008)
[43] Kopell, N. J.; Ermentrout, G. B., Subcellular oscillations and bursting, Math. Biosci., 78, 2, 265-291 (1986) · Zbl 0589.92006
[44] Hoppensteadt, F. C.; Izhikevich, E. M., (Weakly Connected Neural Networks. Weakly Connected Neural Networks, Appl. Math. Sci., vol. 126 (1997), Springer) · Zbl 0887.92003
[46] Guckenheimer, J.; Kuehn, C., Computing slow manifolds of saddle type, SIAM J. Appl. Dyn. Syst., 8, 3, 854-879 (2009) · Zbl 1176.37026
[47] Nowacki, J.; Osinga, H. M.; Tsaneva-Atanasova, K., Dynamical systems analysis of spike-adding mechanisms in transient bursts, J. Math. Neurosci., 2, 1, 1-28 (2012) · Zbl 1291.92043
[48] Terman, D., Chaotic spikes arising from a model of bursting in excitable membranes, SIAM J. Appl. Math., 51, 5, 1418-1450 (1991) · Zbl 0754.58026
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.