×

Global-local model reduction for heterogeneous Forchheimer flow. (English) Zbl 1433.76066

Summary: In this paper, we propose a mixed Generalized Multiscale Finite Element Method (GMsFEM) for solving nonlinear Forchheimer flow in highly heterogeneous porous media. We consider the two term law form of the Forchheimer equation in the case of slightly-compressible single-phase flows. We write the resulting system in terms of a degenerate nonlinear flow equation for pressure when the nonlinearity depends on the pressure gradient. The proposed approach constructs multiscale basis functions for the velocity field following Mixed-GMsFEM as developed in [E. T. Chung et al., Multiscale Model. Simul. 13, No. 1, 338–366 (2015; Zbl 1317.65204)]. To reduce the computational cost resulting from solving nonlinear system, we combine the GMsFEM with Discrete Empirical Interpolation Method (DEIM) to compute the nonlinear coefficients in some selected degrees of freedom at each coarse domain. In addition, a global reduction method such as Proper Orthogonal Decomposition (POD) is used to construct the online space to be used for different inputs or initial conditions. We present numerical and theoretical results to show that in addition to speeding up the simulation we can achieve good accuracy with a few basis functions per coarse edge. Moreover, we present an adaptive method for basis enrichment of the offline space based on an error indicator depending on the local residual norm. We use this enrichment method for the multiscale basis functions at some fixed time levels. Our numerical experiments show that these additional multiscale basis functions will reduce the current error if we start with a sufficient number of initial offline basis functions.

MSC:

76M10 Finite element methods applied to problems in fluid mechanics
76S05 Flows in porous media; filtration; seepage
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs

Citations:

Zbl 1317.65204
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Hou, Thomas Y.; Wu, Xiao-Hui, A multiscale finite element method for elliptic problems in composite materials and porous media, J. Comput. Phys., 134, 1, 169-189 (1997) · Zbl 0880.73065
[2] Efendiev, Yalchin; Hou, Thomas Y., Multiscale Finite Element Methods: Theory and Applications, vol. 4 (2009), Springer Science & Business Media · Zbl 1163.65080
[3] Hughes, Thomas J. R.; Feijóo, Gonzalo R.; Mazzei, Luca; Quincy, Jean-Baptiste, The variational multiscale methoda paradigm for computational mechanics, Comput. Methods Appl. Mech. Engrg., 166, 1, 3-24 (1998) · Zbl 1017.65525
[4] Jenny, P.; Lee, S. H.; Tchelepi, H. A., Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys., 187, 1, 47-67 (2003) · Zbl 1047.76538
[5] Aarnes, Jorg E., On the use of a mixed multiscale finite element method for greaterflexibility and increased speed or improved accuracy in reservoir simulation, Multiscale Model. Simul., 2, 3, 421-439 (2004) · Zbl 1181.76125
[6] Wu, Xiao-Hui; Efendiev, Y.; Hou, Thomas Y., Analysis of upscaling absolute permeability, Discrete Contin. Dyn. Syst. Ser. B, 2, 2, 185-204 (2002) · Zbl 1162.65327
[7] Karimi-Fard, Mohammad; Durlofsky, Louis J., Detailed near-well Darcy-Forchheimer flow modeling and upscaling on unstructured 3D grids, (SPE Reservoir Simulation Symposium (2009), Society of Petroleum Engineers)
[8] Garibotti, Cristiano Rodrigues; Peszyńska, M., Upscaling non-Darcy flow, Transp. Porous Media, 80, 3, 401-430 (2009)
[9] Aulisa, Eugenio; Bloshanskaya, Lidia; Efendiev, Yalchin; Ibragimov, Akif, Upscaling of Forchheimer flows, Adv. Water Resour., 70, 77-88 (2014)
[10] Efendiev, Y.; Galvis, J.; Hou, T., Generalized multiscale finite element methods, J. Comput. Phys., 251, 116-135 (2013) · Zbl 1349.65617
[11] Calo, Victor M.; Efendiev, Yalchin; Galvis, Juan; Ghommem, Mehdi, Multiscale empirical interpolation for solving nonlinear PDEs, J. Comput. Phys., 278, 204-220 (2014) · Zbl 1349.65612
[12] Ghommem, M.; Presho, M.; Calo, V. M.; Efendiev, Y., Mode decomposition methods for flows in high-contrast porous media. Global-local approach, J. Comput. Phys., 253, 226-238 (2013) · Zbl 1349.76209
[13] Chung, Eric T.; Efendiev, Yalchin; Lee, Chak Shing, Mixed generalized multiscale finite element methods and applications, Multiscale Model. Simul., 13, 1, 338-366 (2015) · Zbl 1317.65204
[14] Alotaibi, Manal; Calo, Victor M.; Efendiev, Yalchin; Galvis, Juan; Ghommem, Mehdi, Global-local nonlinear model reduction for flows in heterogeneous porous media, Comput. Methods Appl. Mech. Engrg., 292, 122-137 (2015) · Zbl 1423.76414
[16] Chung, Eric T.; Efendiev, Yalchin; Leung, Wing Tat, Residual-driven online generalized multiscale finite element methods, J. Comput. Phys., 302, 176-190 (2015) · Zbl 1349.65615
[18] Chung, Eric T.; Leung, Wing Tat, Mixed GMsFEM for the simulation of waves in highly heterogeneous media, J. Comput. Appl. Math., 306, 69-86 (2016) · Zbl 1382.65309
[19] Ghommem, M.; Akhtar, I.; Hajj, M. R., A low-dimensional tool for predicting force decomposition coefficients and varying inflow conditions, Prog. Comput. Fluid Dyn. (2013)
[20] Sirovich, L., Turbulence and the dynamics of coherent structures, Quart. Appl. Math., 45, 561-590 (1987) · Zbl 0676.76047
[21] Berkooz, G.; Holmes, P.; Lumley, J. L., The proper orthogonal decomposition in the analysis of turbulent flows, Annu. Rev. Fluid Mech., 25, 539-575 (1993)
[22] Holmes, P.; Lumley, J. L.; Berkooz, G., Turbulence, Coherent Structures, Dynamical Systems and Symmetry (1996), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0890.76001
[23] Akhtar, I.; Nayfeh, A. H.; Ribbens, C. J., On the stability and extension of reduced-order Galerkin models in incompressible flows: A numerical study of vortex shedding, Theor. Comput. Fluid Dyn., 23, 3, 213-237 (2009) · Zbl 1234.76040
[24] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Two-level discretizations of nonlinear closure models for proper orthogonal decomposition, J. Comput. Phys., 230, 1, 126-146 (2011) · Zbl 1427.76226
[25] Wang, Z.; Akhtar, I.; Borggaard, J.; Iliescu, T., Proper orthogonal decomposition closure models for turbulent flows: A numerical comparison, Comput. Methods Appl. Mech. Engrg., 237-240, 10-26 (2012) · Zbl 1253.76050
[26] Akhtar, I.; Wang, Z.; Borggaard, J.; Iliescu, T., A new closure strategy for proper orthogonal decomposition reduced-order models, J. Comput. Nonlinear Dyn., 7, 3, 034503 (2012)
[27] Hay, A.; Borggaard, J.; Akhtar, I.; Pelletier, D., Reduced-order models for parameter dependent geometries based on shape sensitivity analysis, J. Comput. Phys., 229, 1327-1352 (2010) · Zbl 1329.76058
[28] Hay, A.; Akhtar, I.; Borggaard, J. T., On the use of sensitivity analysis in model reduction to predict flows for varying inflow conditions, Internat. J. Numer. Methods Fluids, 68, 1, 122-134 (2012) · Zbl 1426.76267
[29] Chung, Eric; Efendiev, Yalchin; Hou, Thomas Y., Adaptive multiscale model reduction with generalized multiscale finite element methods, J. Comput. Phys., 320, 69-95 (2016) · Zbl 1349.76191
[30] Chung, Eric T.; Leung, Wing Tat; Vasilyeva, Maria, Mixed GMsFEM for second order elliptic problem in perforated domains, J. Comput. Appl. Math., 304, 84-99 (2016) · Zbl 1382.65382
[31] Chaturantabut, S.; Sorensen, D. C., Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput., 32, 5, 2737-2764 (2010) · Zbl 1217.65169
[32] Aulisa, Eugenio; Bloshanskaya, Lidia; Hoang, Luan; Ibragimov, Akif, Analysis of generalized Forchheimer flows of compressible fluids in porous media, J. Math. Phys., 50, 10, 103102 (2009) · Zbl 1236.76067
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.