×

Coulomb Green’s function and image potential near a cylindrical diffuse interface. (English) Zbl 1351.78013

Summary: In a preceding paper [the first and the third author, ibid. 184, No. 1, 51–59 (2013; Zbl 1296.78005)], we revisited the problem of calculating Coulomb Green’s function and image potential near a planar diffuse interface within which the dielectric permittivity of the inhomogeneous medium changes continuously along one Cartesian direction in a transition layer between two dissimilar dielectric materials. In the present paper, we consider a cylindrical diffuse interface within which the dielectric permittivity changes continuously along the radial direction instead. First we propose a specific cylindrical diffuse interface model, termed the quasi-harmonic diffuse interface model, that can admit analytical solution for the Green’s function in terms of the modified Bessel functions. Then and more importantly we develop a robust numerical method for building Green’s functions for any cylindrical diffuse interface models. The main idea of the numerical method is, after dividing a diffuse interface into multiple sublayers, to approximate the dielectric permittivity profile in each one of the sublayers by one of the quasi-harmonic functional form rather than simply by a constant value as one would normally do. Next we describe how to efficiently compute well-behaved ratios, products, and logarithmic derivatives of the modified Bessel functions so as to avoid direct evaluations of individual modified Bessel functions in our formulations. Finally we conduct numerical experiments to show the effectiveness of the quasi-harmonic diffuse interface model in overcoming the divergence of the image potential, to validate the numerical method in terms of its accuracy and convergence, and to demonstrate its capability for computing Green’s functions for any cylindrical diffuse interface models.

MSC:

78A30 Electro- and magnetostatics
78M25 Numerical methods in optics (MSC2010)

Citations:

Zbl 1296.78005
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Xue, C.; Deng, S., Comput. Phys. Comm., 184, 51-59 (2013)
[2] Frediani, L.; Cammi, R.; Corni, S.; Tomasi, J., J. Chem. Phys., 120, 3893-3907 (2004)
[3] Xu, Z.; Cai, W.; Cheng, X., Commun. Comput. Phys., 9, 1056-1070 (2011)
[4] Lin, H.; Xu, Z.; Tang, H.; Cai, W., J. Sci. Comput., 53, 249-267 (2012)
[5] Jackson, J. D., Classical Electrodynamics (1999), John Wiley: John Wiley New York · Zbl 0920.00012
[6] Buff, F. P.; Goel, N. G., J. Chem. Phys., 51, 4983-4996 (1969)
[7] Buff, F. P.; Goel, N. G., J. Chem. Phys., 51, 5363-5373 (1969)
[8] Buff, F. P.; Goel, N. G., J. Chem. Phys., 56, 2405-2420 (1972)
[9] Clay, J. R.; Goel, N. S.; Buff, F. P., J. Chem. Phys., 56, 4245-4255 (1972)
[10] Perram, J. W.; Barber, M. N., Mol. Phys., 28, 131-150 (1974)
[11] Stern, F., Phys. Rev. B, 17, 5009-5015 (1978)
[12] Baricz, A.; Ponnusamy, S.; Vuorinen, M., Expo. Math., 29, 399-414 (2011)
[13] Clements, D. L., Comput. Mech., 22, 26-31 (1998)
[14] Bolcatto, P. G.; Proetto, C. R., J. Phys.: Condens. Matter, 13, 319-334 (2001)
[15] Movilla, J. L.; Planelles, J., Comput. Phys. Comm., 170, 144-152 (2005)
[16] Sihvola, A.; Lindell, I. V., J. Electro. Waves Appl., 3, 37-60 (1989)
[17] Lindell, I. V.; Ermutlu, M. E.; Sihvola, A. H., IEE Proc.-H, 139, 186-192 (1992)
[18] Sihvola, A.; Lindell, I. V., J. Electro. Waves Appl., 2, 741-756 (1988)
[19] Movilla, J. L.; Planelles, J., Phys. Rev. B, 71, Article 075319 pp. (2005)
[20] Deng, S., Comput. Phys. Comm., 181, 787-799 (2010)
[21] Bordelon, D. J., SIAM Rev., 15, 666-668 (1973)
[22] Ross, D. K., SIAM Rev., 15, 668-670 (1973)
[23] Laforgia, A., J. Comput. Appl. Math., 34, 263-267 (1991)
[24] Baricz, A., Proc. Amer. Math. Soc., 137, 189-193 (2008)
[25] Amos, D. E., Math. Comp., 28, 239-251 (1974)
[26] Laforgia, A.; Natalini, P., J. Inequal. Appl. (2010), article ID 253035
[27] Gaunt, R. E., J. Math. Anal. Appl., 420, 373-386 (2014)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.