zbMATH — the first resource for mathematics

Time varying axially symmetric vector random fields on the sphere. (English) Zbl 1353.60048
Summary: This paper presents a general form of the covariance matrix structure for a vector random field that is axially symmetric and mean square continuous on the sphere and provides a series representation for a longitudinally reversible one. The series representation is somehow an imitator of the covariance matrix function, and both of them have simpler forms than those proposed in the literature in terms of the associated Legendre functions and are useful for modeling and simulation. Also, a general form of the covariance matrix structure is derived for a spatio-temporal vector random field that is axially symmetric and mean square continuous over the sphere, and a series representation is given for a longitudinally reversible one.

60G60 Random fields
60G15 Gaussian processes
62M40 Random fields; image analysis
62M10 Time series, auto-correlation, regression, etc. in statistics (GARCH)
62M30 Inference from spatial processes
Full Text: DOI arXiv
[1] Andrews G. E., Askey R. and Roy R., Special Functions, Cambridge University Press, Cambridge, 1999.
[2] Askey R. and Bingham N. H., Gaussian processes on compact symmetric spaces, Z. Wahrscheinlichkeitstheorie verw. Gebiete 37 (1976), 127-143. · Zbl 0329.60019
[3] Berman S. M., Sojourns and extremes of Fourier sums and series with random coefficients, Stochastic Process. Appl. 15 (1983), 213-238. · Zbl 0514.60042
[4] Bingham N. H., Positive definite functions on spheres, Proc. Cambridge Philos. Soc. 73 (1973), 145-156. · Zbl 0244.43002
[5] Castruccio S. and Stein M. L., Global space-time models for climate ensembles, Ann. Appl. Stat. 7 (2013), 1593-1611. · Zbl 1454.62436
[6] Cheng D. and Xiao Y., Excursion probability of Gaussian random fields on sphere, Bernoulli 22 (2016), 1113-1130. · Zbl 1337.60102
[7] D’Ovidio M., Coordinates changed random fields on the sphere, J. Stat. Phys. 154 (2014), 1153-1176. · Zbl 1296.60133
[8] D’Ovidio M., Leonenko N. and Orsingher E., Fractional spherical random fields, Statist. Probab. Lett. 116 (2016), 146-156. · Zbl 1341.60040
[9] Du J., Ma C. and Li Y., Isotropic variogram matrix functions on spheres, Math. Geosci. 45 (2013), 341-357. · Zbl 1321.86021
[10] Gangolli R., Positive definite kernels on homogeneous spaces and certain stochastic processes related to Lévy’s Brownian motion of several parameters, Ann. Inst. Henri Poincaré B 3 (1967), 121-226. · Zbl 0157.24902
[11] Gaspari G. and Cohn S. E., Construction of correlations in two and three dimensions, Q. J. R. Meteorol. Soc. 125 (1999), 723-757.
[12] Gaspari G., Cohn S. E., Guo J. and Pawson S., Construction and application of covariance functions with variable length-fields, Q. J. R. Meteorol. Soc. 132 (2006), 815-1838.
[13] Gradshteyn I. S. and Ryzhik I. M., Tables of Integrals, Series, and Products, 7th ed., Academic Press, Amsterdam, 2007. · Zbl 1208.65001
[14] Hannan E. J., Multiple Time Series, Wiley, New York, 1970. · Zbl 0211.49804
[15] Hitczenko M. and Stein M. L., Some theory for anisotropic processes on the sphere, Statist. Methods 9 (2012), 211-227. · Zbl 1248.60040
[16] Huang C., Zhang H. and Robeson S., A simplified representation of the covariance structure of axially symmetric processes on the sphere, Statist. Probab. Lett. 82 (2012), 1346-1351. · Zbl 1251.60012
[17] Jones R. H., Stochastic processes on a sphere, Ann. Math. Statist. 34 (1963), 213-218. · Zbl 0202.46702
[18] Jun M., Non-stationary cross-covariance models for multivariate processes on a globe, Scand. J. Statist. 38 (2011), 726-747. · Zbl 1246.91113
[19] Jun M. and Stein M. L., An approach to producing space-time covariance functions on spheres, Technometrics 49 (2007), 468-479.
[20] Jun M. and Stein M. L., Nonstationary covariance models for global data, Ann. Appl. Statist. 2 (2008), 1271-1289. · Zbl 1168.62381
[21] Lamberg L., Muinonen K., Ylönen J. and Lumme K., Spectral estimation of Gaussian random circles and spheres, J. Comput. Appl. Math. 136 (2001), 109-121. · Zbl 0984.62075
[22] Leonenko N. and Sakhno L., On spectral representation of tensor random fields on the sphere, Stoch. Anal. Appl. 31 (2012), 167-182. · Zbl 1239.60038
[23] Leonenko N. and Shieh N., Rényi function for multifractal random fields, Fractals 21 (2013), Article ID 1350009. · Zbl 1278.28003
[24] Ma C., Vector random fields with second-order moments or second-order increments, Stoch. Anal. Appl. 29 (2011), 197-215. · Zbl 1213.60071
[25] Ma C., Stationary and isotropic vector random fields on spheres, Math. Geosci. 44 (2012), 765-778. · Zbl 1321.62117
[26] Ma C., Isotropic covariance matrix functions on all spheres, Math. Geosci. 47 (2015), 699-717. · Zbl 1323.62092
[27] Ma C., Isotropic covariance matrix polynomials on spheres, Stoch. Anal. Appl. 34 (2016), 679-706. · Zbl 1342.60052
[28] Ma C., Stochastic representations of isotropic vector random fields on spheres, Stoch. Anal. Appl. 34 (2016), 389-403. · Zbl 1341.60043
[29] Ma C., Time varying isotropic vector random fields on spheres, J. Theoret. Probab. (2016), 10.1007/s10959-016-0689-1. · Zbl 1408.60039
[30] Malyarenko A., Invariant Random Fields on Spaces with a Group Action, Springer, New York, 2013. · Zbl 1268.60006
[31] Malyarenko A. and Olenko A., Multidimensional covariant random fields on commutative locally compact groups, Ukrainian Math. J. 44 (1992), 1384-1389.
[32] McLeod M. G., Stochastic processes on a sphere, Phys. Earth Plan. Interior 43 (1986), 283-299.
[33] Mokljacuk M. P. and Jadrenko M. I., Linear statistical problems for stationary isotropic random fields on a sphere. I, Theoret. Probab. Math. Statist. 18 (1979), 115-124. · Zbl 0451.60057
[34] Roy R., Spetral analysis for random process on the circle, J. Appl. Probab. 9 (1972), 745-757. · Zbl 0248.62041
[35] Roy R., Spectral analysis for a random process on the sphere, Ann. Inst. Statist. Math. 28 (1976), 91-97. · Zbl 0368.62084
[36] Schoenberg I., Positive definite functions on spheres, Duke Math. J. 9 (1942), 96-108. · Zbl 0063.06808
[37] Stein M., Spatial variation of total column ozone on a global scale, Ann. Appl. Stat. 1 (2007), 191-210. · Zbl 1129.62115
[38] Szegő G., Orthogonal Polynomials, 4th ed., Amer. Math. Soc. Colloq. Publ. 23.
[39] Watson G. N., A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, London, 1944. · Zbl 0063.08184
[40] Yadrenko A. M., Spectral Theory of Random Fields, Optimization Software, New York, 1983.
[41] Yaglom A. M., Second-order homogeneous random fields, Proceedings of the Fourth Berkeley Symposium on Mathematical Statistics and Probability. Vol. 2, University of California Press, Berkeley (1961), 593-622. · Zbl 0123.35001
[42] Yaglom A. M., Correlation Theory of Stationary and Related Random Functions. Vol. I, Springer, New York, 1987. · Zbl 0685.62078
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.