×

The Fibonacci family of iterative processes for solving nonlinear equations. (English) Zbl 1351.65030

Summary: This paper presents a class of stationary iterative processes with convergence order equal to the growth rate of generalized Fibonacci sequences. We prove that the informational and computational efficiency of the processes of our class tends to \(2\) from below.
The paper illustrates a connection of the methods of the class with the nonstationary iterative method suggested by our previous paper, whose efficiency index equals to \(2\). We prove that the efficiency of the nonstationary iterative method, measured by Ostrowski-Traub criteria, is maximal among all iterative processes of order \(2\).

MSC:

65H05 Numerical computation of solutions to single equations
11B39 Fibonacci and Lucas numbers and polynomials and generalizations
65Y20 Complexity and performance of numerical algorithms
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Amat, S.; Busquier, S.; Plaza, P. S., Dynamics of a family of third-order iterative methods that do not require using second derivatives, Appl. Math. Comput., 154, 735-746 (2004) · Zbl 1057.65023
[2] Bi, W.; Ren, H.; Wu, Q., New family of seventh-order methods for nonlinear equations, Appl. Math. Comput., 203, 408-412 (2008) · Zbl 1154.65323
[3] Cordero, A.; Torregrosa, J. R., A class of Steffensen type methods with optimal order of convergence, Appl. Math. Comput., 217, 7653-7659 (2011) · Zbl 1216.65055
[4] Fang, L.; Sun, L.; He, G., An efficient Newton-type method with fifth-order convergence for solving nonlinear equations, Comput. Appl. Math., 27, 3, 269-274 (2008) · Zbl 1161.65040
[5] Grau, M.; Diaz-Barrero, J. L., An improvement of the Euler-Chebyshev iterative method, J. Math. Anal. Appl., 315, 1-7 (2006) · Zbl 1113.65048
[6] Gutierrez, J. M.; Hernandez, M. A., An acceleration of Newton’s method: super-Halley method, Appl. Math. Comput., 117, 223-239 (2001) · Zbl 1023.65051
[7] Halley, E., A new exact and easy method for finding the roots of equations generally and without any previous reduction, Philos. R. Soc. Lond., 18, 136-147 (1964)
[8] Kogan, T. I., Generalization of the method of chords for an algebraic or transcendental equation, Tashkent, Gos. Univ. Naučn. Trudy Vyp., 276, 53-55 (1966), (in Russian)
[9] Kogan, T. I., Construction of iterative processes of high orders, Ž. Vyčisl. Mat. Mat. Fiz., 7, 423-424 (1967), (in Russian)
[10] Kogan, T. I.; Sapir, L.; Sapir, A., A nonstationary iterative second-order method for solving nonlinear equations, Appl. Math. Comput., 188, 75-82 (2007) · Zbl 1121.65051
[11] Kou, J.; Li, Y., A variant of Chebyshev’s method with sixth-order convergence, Numer. Algorithms, 43, 273-278 (2006) · Zbl 1125.65042
[12] Kou, J.; Li, Y., Modified Chebyshev-Halley methods with sixth-order convergence, Appl. Math. Comput., 188, 681-685 (2007) · Zbl 1118.65037
[13] Kou, J.; Li, Y., The improvements of Chebyshev-Halley methods with fifth-order convergence, Appl. Math. Comput., 188, 143-147 (2007) · Zbl 1118.65036
[14] Kung, H. T.; Traub, J. F., Optimal order of one-point and multipoint iteration, J. ACM, 21, 643-651 (1974) · Zbl 0289.65023
[15] Lynch, W. C., The t-Fibonacci numbers and poly-phase sorting, Fibonacci Q., 8, 6-22 (1970) · Zbl 0213.18602
[16] Mamta, J.; Kanwar, V.; Kukreja, V. K.; Singh, S., On some third-order iterative methods for solving nonlinear equations, Appl. Math. Comput., 171, 272-280 (2005) · Zbl 1084.65051
[17] Miles, E. P., Generalized Fibonacci numbers and associated matrices, Am. Math. Mon., 67, 8, 745-752 (1960) · Zbl 0103.27203
[18] Noor, M. A.; Khan, W. A., Fourth-order iterative method free from second derivative for solving nonlinear equations, Appl. Math. Sci., 6, 4617-4625 (2007) · Zbl 1262.65058
[19] Ortega, J. M.; Rheinboldt, W. C., Iterative Solution on Nonlinear Equations in Several Variables (1970), Academic Press: Academic Press New York · Zbl 0241.65046
[20] Ostrowski, A. M., Solution of Equations in Euclidean and Banach Spaces (1973), Academic Press: Academic Press New York · Zbl 0304.65002
[21] Özban, A. Y., Some new variants of Newton’s method, Appl. Math. Lett., 17, 677-682 (2004) · Zbl 1065.65067
[22] Petcović, M. S.; Petcović, L. D., Families of optimal multipoint methods for solving nonlinear equations: a survey, Appl. Anal. Discrete Math., 4, 1, 1-22 (2010)
[23] Schröder, E., Über unendlich viele Algorithmen zur Auflösung, Math. Ann., 1870, 2, 317-365 (1870)
[24] Steffensen, J. F., Remarks on iteration, Scand. Actuar. J., 1933, 1, 64-72 (1933) · Zbl 0007.02601
[25] Traub, J. F., Iterative Methods for the Solution of Equations (1964), Prentice Hall: Prentice Hall Engelwood Cliffs, NJ · Zbl 0121.11204
[26] Wall, D., Fourth-order iterative method free from second derivative for solving nonlinear equations, Math. Comput., 10, 167-168 (1956) · Zbl 0070.12505
[27] Weerakoon, S.; Fernando, T. G., A variant of Newton’s method with accelerated third-order convergence, Appl. Math. Sci., 13, 87-93 (2000) · Zbl 0973.65037
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.