×

A Bayesian approach to the semiparametric estimation of a minimum inhibitory concentration distribution. (English) Zbl 1400.62267

Summary: Bacteria that have developed a reduced susceptibility against antimicrobials pose a major threat to public health. Hence, monitoring their distribution in the general population is of major importance. This monitoring is performed based on minimum inhibitory concentration (MIC) values, which are collected through dilution experiments. We present a semiparametric mixture model to estimate the MIC density on the full continuous scale. The wild-type first component is assumed to be of a parametric form, while the nonwild-type second component is modelled nonparametrically using Bayesian P-splines combined with the composite link model. A Metropolis within Gibbs strategy was used to draw a sample from the joint posterior. The newly developed method was applied to a specific bacterium-antibiotic combination, that is, Escherichia coli tested against ampicillin. After obtaining an estimate for the entire density, model-based classification can be performed to check whether or not an isolate belongs to the wild-type subpopulation. The performance of the new method, compared to two existing competitors, is assessed through a small simulation study.

MSC:

62P10 Applications of statistics to biology and medical sciences; meta analysis
62G05 Nonparametric estimation
62F15 Bayesian inference
PDFBibTeX XMLCite
Full Text: DOI Euclid

References:

[1] /652/EU (2013). Commission Implementing Decision of 12 November 2013 on the monitoring and reporting of antimicrobial resistance in zoonotic and commensal bacteria (notified under document C(2013) 7145). Text with EEA relevance.
[2] Andrews, J. M. (2001). Determination of minimum inhibition concentrations. J. Antimicrob. Chemother. 48 S1.5-S1.16.
[3] Annis, D. H. and Craig, B. A. (2005). Statistical properties and inference of the antimicrobial MIC test. Stat. Med. 24 3631-3644. · doi:10.1002/sim.2207
[4] Atchadé, Y. F. and Rosenthal, J. S. (2005). On adaptive Markov chain Monte Carlo algorithms. Bernoulli 11 815-828. · Zbl 1085.62097 · doi:10.3150/bj/1130077595
[5] Azzalini, A. and Capitanio, A. (2003). Distributions generated by perturbation of symmetry with emphasis on a multivariate skew \(t\)-distribution. J. R. Stat. Soc. Ser. B Stat. Methodol. 65 367-389. · Zbl 1065.62094 · doi:10.1111/1467-9868.00391
[6] Böhning, D. (1986). A vertex-exchange-method in \(D\)-optimal design theory. Metrika 33 337-347. · Zbl 0601.62091 · doi:10.1007/BF01894766
[7] Craig, B. A. (2000). Modeling approach to diameter breakpoint determination. Diagn. Microbiol. Infect. Dis. 36 193-202.
[8] Eilers, P. H. C. (2007). Ill-posed problems with counts, the composite link model and penalized likelihood. Stat. Model. 7 239-254.
[9] Eilers, P. H. C. and Marx, B. D. (1996). Flexible smoothing with \(B\)-splines and penalties. Statist. Sci. 11 89-121. · Zbl 0955.62562 · doi:10.1214/ss/1038425655
[10] Finch, R. G., Greenwood, D., Whitley, R. J. and Norrby, S. R. (2010). Antibiotic and Chemotherapy . Saunders, Elsevier.
[11] Haario, H., Saksman, E. and Tamminen, J. (2001). An adaptive Metropolis algorithm. Bernoulli 7 223-242. · Zbl 0989.65004 · doi:10.2307/3318737
[12] Igarashi, T., Inatomi, J., Wake, A., Takamizawa, M., Katayama, H. and Iwata, T. (1999). Failure of pre-diarrheal antibiotics to prevent hemolytic uremic syndrome in serologically proven Escherichia coli O157:H7 gastrointestinal infection. J. Pediatr. 135 768-769.
[13] Jaspers, S., Aerts, M., Verbeke, G. and Beloeil, P.-A. (2014a). Estimation of the wild-type minimum inhibitory concentration value distribution. Stat. Med. 33 289-303. · doi:10.1002/sim.5939
[14] Jaspers, S., Aerts, M., Verbeke, G. and Beloeil, P.-A. (2014b). A new semi-parametric mixture model for interval censored data, with applications in the field of antimicrobial resistance. Comput. Statist. Data Anal. 71 30-42.
[15] Jaspers, S., Verbeke, G., Böhning, D. and Aerts, M. (2016). Application of the Vertex Exchange Method to estimate a semi-parametric mixture model for the MIC density of Escherichia coli isolates tested for susceptibility against ampicillin. Biostatistics 17 94-107.
[16] Kahlmeter, G., Brown, D. F. J., Goldstein, F. W., MacGowan, A. P., Mouton, J. W., Osterlund, A., Rodloff, A., Steinbakk, M., Urbaskova, P. and Vatopoulos, A. (2003). European harmonization of MIC breakpoints for antimicrobial susceptibility testing of bacteria. Journal of Antimicrobial Chemotherapy 52 145-148.
[17] Kronvall, G. (2010). Antimicrobial resistance 1979-2009 at Karolinska hospital, Sweden: Normalized resistance interpretation during a 30-year follow-up on Staphylococcus aureus and Escherichia coli resistance development. APMIS 118 621-639.
[18] Lambert, P. and Eilers, P. H. C. (2009). Bayesian density estimation from grouped continuous data. Comput. Statist. Data Anal. 53 1388-1399. · Zbl 1452.62267
[19] Lang, S. and Brezger, A. (2004). Bayesian P-splines. J. Comput. Graph. Statist. 13 183-212. · doi:10.1198/1061860043010
[20] Lee, M. L. T. and Whitmore, G. A. (1999). Statistical inference for serial dilution assay data. Biometrics 55 1215-1220. · Zbl 1059.62670 · doi:10.1111/j.0006-341X.1999.01215.x
[21] Palumbi, S. R. (2001). Humans as the world’s greatest evolutionary force. Science 293 1786-1790.
[22] Schellhase, C. and Kauermann, G. (2012). Density estimation and comparison with a penalized mixture approach. Comput. Statist. 27 757-777. · Zbl 1304.65065 · doi:10.1007/s00180-011-0289-6
[23] Tadesse, D. A., Zhao, S., Tong, E., Ayers, S., Singh, A., Bartholomew, M. J. and McDermott, P. F. (2012). Antimicrobial drug resistance in Escherichia coli from humans and food Animals, United States, 1950-2002. Emerg. Infect. Dis. 18 (5) 741-749.
[24] Thompson, R. and Baker, R. J. (1981). Composite link functions in generalized linear models. J. Roy. Statist. Soc. Ser. C 30 125-131. · Zbl 0471.62051 · doi:10.2307/2346381
[25] Turnidge, J., Kahlmeter, G. and Kronvall, G. (2006). Statistical characterisation of bacterial wild-type MIC value distributions and the determination of epidemiological cut-off values. Clin. Microbiol. Infect. 12 418-425.
[26] Wiegand, I., Hilpert, K. and Hancock, R. E. W. (2008). Agar and broth dilution methods to determine the minimal inhibitory concentration (MIC) of antimicrobial substances. Nat. Protoc. 3 163-175.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.