×

Effective Lagrangian for a light Higgs-like scalar. (English) Zbl 1342.81667

Summary: We reconsider the effective Lagrangian that describes a light Higgs-like boson and better clarify a few issues which were not exhaustively addressed in the previous literature. In particular we highlight the strategy to determine whether the dynamics responsible for the electroweak symmetry breaking is weakly or strongly interacting. We also discuss how the effective Lagrangian can be implemented into automatic tools for the calculation of Higgs decay rates and production cross sections.

MSC:

81V05 Strong interaction, including quantum chromodynamics

Software:

HDECAY; SDECAY; eHDECAY
PDFBibTeX XMLCite
Full Text: DOI arXiv

References:

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC, Phys. Lett.B 716 (2012) 1 [arXiv:1207.7214] [INSPIRE].
[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS experiment at the LHC, Phys. Lett.B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].
[3] S. Weinberg, The quantum theory of fields, Cambridge University Press, Cambridge, U.K. (1996). · doi:10.1017/CBO9781139644174
[4] G. Giudice, C. Grojean, A. Pomarol and R. Rattazzi, The Strongly-Interacting Light Higgs, JHEP06 (2007) 045 [hep-ph/0703164] [INSPIRE]. · doi:10.1088/1126-6708/2007/06/045
[5] D.B. Kaplan and H. Georgi, SU(2) × U(1) Breaking by Vacuum Misalignment, Phys. Lett.B 136 (1984) 183 [INSPIRE].
[6] S. Dimopoulos and J. Preskill, Massless composites with massive constituents, Nucl. Phys.B 199 (1982) 206 [INSPIRE]. · doi:10.1016/0550-3213(82)90345-5
[7] T. Banks, Constraints on SU(2) × U(1) breaking by vacuum misalignment, Nucl. Phys.B 243 (1984) 125 [INSPIRE].
[8] D.B. Kaplan, H. Georgi and S. Dimopoulos, Composite Higgs Scalars, Phys. Lett.B 136 (1984) 187 [INSPIRE].
[9] H. Georgi, D.B. Kaplan and P. Galison, Calculation of the composite Higgs mass, Phys. Lett.B 143 (1984) 152 [INSPIRE].
[10] H. Georgi and D.B. Kaplan, Composite Higgs and Custodial SU(2), Phys. Lett.B 145 (1984) 216 [INSPIRE].
[11] M.J. Dugan, H. Georgi and D.B. Kaplan, Anatomy of a Composite Higgs Model, Nucl. Phys.B 254 (1985) 299 [INSPIRE]. · doi:10.1016/0550-3213(85)90221-4
[12] R. Contino, Y. Nomura and A. Pomarol, Higgs as a holographic pseudoGoldstone boson, Nucl. Phys.B 671 (2003) 148 [hep-ph/0306259] [INSPIRE]. · Zbl 1058.81583 · doi:10.1016/j.nuclphysb.2003.08.027
[13] K. Agashe, R. Contino and A. Pomarol, The Minimal composite Higgs model, Nucl. Phys.B 719 (2005) 165 [hep-ph/0412089] [INSPIRE]. · doi:10.1016/j.nuclphysb.2005.04.035
[14] A. Djouadi, J. Kalinowski and M. Spira, HDECAY: A Program for Higgs boson decays in the standard model and its supersymmetric extension, Comput. Phys. Commun.108 (1998) 56 [hep-ph/9704448] [INSPIRE]. · Zbl 0938.81515 · doi:10.1016/S0010-4655(97)00123-9
[15] A. Djouadi, M. Muhlleitner and M. Spira, Decays of supersymmetric particles: The Program SUSY-HIT (SUspect-SdecaY-HDECAY-InTerface), Acta Phys. Polon.B 38 (2007) 635 [hep-ph/0609292] [INSPIRE].
[16] R. Contino, M. Ghezzi, C. Grojean, M.M. Muhlleitner and M. Spira, eHDECAY: an implementation of the Higgs effective Lagrangian into HDECAY, work in progress. · Zbl 1360.81015
[17] C. Burges and H.J. Schnitzer, Virtual effects of excited quarks as probes of a possible new hadronic mass scale, Nucl. Phys.B 228 (1983) 464 [INSPIRE]. · doi:10.1016/0550-3213(83)90555-2
[18] C.N. Leung, S. Love and S. Rao, Low-Energy Manifestations of a New Interaction Scale: Operator Analysis, Z. Phys.C 31 (1986) 433 [INSPIRE].
[19] W. Buchmüller and D. Wyler, Effective Lagrangian Analysis of New Interactions and Flavor Conservation, Nucl. Phys.B 268 (1986) 621 [INSPIRE]. · doi:10.1016/0550-3213(86)90262-2
[20] R. Rattazzi, Anomalous interactions at the Z0 pole, Z. Phys.C 40 (1988) 605 [INSPIRE].
[21] B. Grzadkowski, Z. Hioki, K. Ohkuma and J. Wudka, Probing anomalous top quark couplings induced by dimension-six operators at photon colliders, Nucl. Phys.B 689 (2004) 108 [hep-ph/0310159] [INSPIRE]. · doi:10.1016/j.nuclphysb.2004.04.006
[22] P.J. Fox, Z. Ligeti, M. Papucci, G. Perez and M.D. Schwartz, Deciphering top flavor violation at the LHC with B factories, Phys. Rev.D 78 (2008) 054008 [arXiv:0704.1482] [INSPIRE].
[23] J. Aguilar-Saavedra, A Minimal set of top anomalous couplings, Nucl. Phys.B 812 (2009) 181 [arXiv:0811.3842] [INSPIRE]. · Zbl 1194.81315 · doi:10.1016/j.nuclphysb.2008.12.012
[24] J. Aguilar-Saavedra, A Minimal set of top-Higgs anomalous couplings, Nucl. Phys.B 821 (2009) 215 [arXiv:0904.2387] [INSPIRE]. · Zbl 1196.81249 · doi:10.1016/j.nuclphysb.2009.06.022
[25] C. Grojean, W. Skiba and J. Terning, Disguising the oblique parameters, Phys. Rev.D 73 (2006) 075008 [hep-ph/0602154] [INSPIRE].
[26] B. Grzadkowski, M. Iskrzynski, M. Misiak and J. Rosiek, Dimension-Six Terms in the Standard Model Lagrangian, JHEP10 (2010) 085 [arXiv:1008.4884] [INSPIRE]. · Zbl 1291.81452 · doi:10.1007/JHEP10(2010)085
[27] R. Barbieri, A. Pomarol, R. Rattazzi and A. Strumia, Electroweak symmetry breaking after LEP-1 and LEP-2, Nucl. Phys.B 703 (2004) 127 [hep-ph/0405040] [INSPIRE]. · doi:10.1016/j.nuclphysb.2004.10.014
[28] R. Barbieri, Electroweak precision tests : what do we learn?, CERN-TH-6659-92 (1992).
[29] M.E. Peskin and T. Takeuchi, Estimation of oblique electroweak corrections, Phys. Rev.D 46 (1992) 381 [INSPIRE].
[30] K. Agashe and R. Contino, Composite Higgs-Mediated FCNC, Phys. Rev.D 80 (2009) 075016 [arXiv:0906.1542] [INSPIRE].
[31] G. Isidori, Flavor physics and CP-violation, arXiv:1302.0661 [INSPIRE].
[32] G. Isidori, Y. Nir and G. Perez, Flavor Physics Constraints for Physics Beyond the Standard Model, Ann. Rev. Nucl. Part. Sci.60 (2010) 355 [arXiv:1002.0900] [INSPIRE]. · doi:10.1146/annurev.nucl.012809.104534
[33] P. Sikivie, L. Susskind, M.B. Voloshin and V.I. Zakharov, Isospin Breaking in Technicolor Models, Nucl. Phys.B 173 (1980) 189 [INSPIRE]. · doi:10.1016/0550-3213(80)90214-X
[34] G. Altarelli and R. Barbieri, Vacuum polarization effects of new physics on electroweak processes, Phys. Lett.B 253 (1991) 161 [INSPIRE].
[35] G. Altarelli, R. Barbieri and S. Jadach, Toward a model independent analysis of electroweak data, Nucl. Phys.B 369 (1992) 3 [Erratum ibid.B 376 (1992) 444] [INSPIRE]. · doi:10.1016/0550-3213(92)90376-M
[36] M. Baak et al., The Electroweak Fit of the Standard Model after the Discovery of a New Boson at the LHC, Eur. Phys. J.C 72 (2012) 2205 [arXiv:1209.2716] [INSPIRE].
[37] M. Redi and A. Weiler, Flavor and CP Invariant Composite Higgs Models, JHEP11 (2011) 108 [arXiv:1106.6357] [INSPIRE]. · Zbl 1306.81429 · doi:10.1007/JHEP11(2011)108
[38] N. Vignaroli, ΔF = 1 constraints on composite Higgs models with LR parity, Phys. Rev.D 86 (2012) 115011 [arXiv:1204.0478] [INSPIRE].
[39] M. Pospelov and A. Ritz, Electric dipole moments as probes of new physics, Annals Phys.318 (2005) 119 [hep-ph/0504231] [INSPIRE]. · Zbl 1070.81116 · doi:10.1016/j.aop.2005.04.002
[40] P. Paradisi and D.M. Straub, The SUSY CP Problem and the MFV Principle, Phys. Lett.B 684 (2010) 147 [arXiv:0906.4551] [INSPIRE].
[41] J.F. Kamenik, M. Papucci and A. Weiler, Constraining the dipole moments of the top quark, Phys. Rev.D 85 (2012) 071501 [arXiv:1107.3143] [INSPIRE].
[42] J. Aguilar-Saavedra, N. Castro and A. Onofre, Constraints on the Wtb vertex from early LHC data, Phys. Rev.D 83 (2011) 117301 [arXiv:1105.0117] [INSPIRE].
[43] Particle Data Group collaboration, J. Beringer et al., Review of Particle Physics (RPP), Phys. Rev.D 86 (2012) 010001 [INSPIRE]. · doi:[INSPIRE]
[44] M. Davier, A. Hoecker, B. Malaescu and Z. Zhang, Reevaluation of the Hadronic Contributions to the Muon g-2 and to alpha(MZ), Eur. Phys. J.C 71 (2011) 1515 [Erratum ibid.C 72 (2012) 1874] [arXiv:1010.4180] [INSPIRE].
[45] D. Hanneke, S.F. Hoogerheide and G. Gabrielse, Cavity Control of a Single-Electron Quantum Cyclotron: Measuring the Electron Magnetic Moment, arXiv:1009.4831 [INSPIRE].
[46] G. Giudice, P. Paradisi and M. Passera, Testing new physics with the electron g-2, JHEP11 (2012) 113 [arXiv:1208.6583] [INSPIRE]. · doi:10.1007/JHEP11(2012)113
[47] Muon (g-2) collaboration, G. Bennett et al., An Improved Limit on the Muon Electric Dipole Moment, Phys. Rev.D 80 (2009) 052008 [arXiv:0811.1207] [INSPIRE].
[48] J. Hudson, D. Kara, I. Smallman, B. Sauer, M. Tarbutt and E. A. Hinds, Improved measurement of the shape of the electron, Nature473 (2011) 493 [INSPIRE]. · doi:10.1038/nature10104
[49] D. Kara, I. Smallman, J. Hudson, B. Sauer, M. Tarbutt and E. A. Hinds, Measurement of the electron’s electric dipole moment using YbF molecules: methods and data analysis, New J. Phys.14 (2012) 103051 [arXiv:1208.4507] [INSPIRE]. · doi:10.1088/1367-2630/14/10/103051
[50] R. Rattazzi, Effective Lagrangian for a strongly-interacting light Higgs, talk given at the workshop Physics at LHC: from Experiment to Theory, Princeton University, Princeton, U.S.A., 21-24 March 2007 [http://indico.cern.ch/getFile.py/access?contribId=29&resId=0&materialId=slides&confId=13975].
[51] R. Contino, C. Grojean, M. Moretti, F. Piccinini and R. Rattazzi, Strong Double Higgs Production at the LHC, JHEP05 (2010) 089 [arXiv:1002.1011] [INSPIRE]. · doi:10.1007/JHEP05(2010)089
[52] R. Contino, L. Da Rold and A. Pomarol, Light custodians in natural composite Higgs models, Phys. Rev.D 75 (2007) 055014 [hep-ph/0612048] [INSPIRE].
[53] S. Choi, . Miller, D.J., M. Muhlleitner and P. Zerwas, Identifying the Higgs spin and parity in decays to Z pairs, Phys. Lett.B 553 (2003) 61 [hep-ph/0210077] [INSPIRE].
[54] A. De Rujula, J. Lykken, M. Pierini, C. Rogan and M. Spiropulu, Higgs look-alikes at the LHC, Phys. Rev.D 82 (2010) 013003 [arXiv:1001.5300] [INSPIRE].
[55] S. Bolognesi, Y. Gao, A.V. Gritsan, K. Melnikov, M. Schulze, N. V. Tran and A. Whitbeck, On the spin and parity of a single-produced resonance at the LHC, Phys. Rev.D 86 (2012) 095031 [arXiv:1208.4018] [INSPIRE].
[56] A. Azatov, A. Falkowski, C. Grojean and E. Kuflik, Constraining the effective Higgs Lagrangian at higher order via h → V V , work in progress.
[57] J.R. Ellis, M.K. Gaillard and D.V. Nanopoulos, A Phenomenological Profile of the Higgs Boson, Nucl. Phys.B 106 (1976) 292 [INSPIRE].
[58] M.A. Shifman, A. Vainshtein, M. Voloshin and V.I. Zakharov, Low-Energy Theorems for Higgs Boson Couplings to Photons, Sov. J. Nucl. Phys.30 (1979) 711 [INSPIRE].
[59] B.A. Kniehl and M. Spira, Low-energy theorems in Higgs physics, Z. Phys.C 69 (1995) 77 [hep-ph/9505225] [INSPIRE].
[60] A. Falkowski, Pseudo-goldstone Higgs production via gluon fusion, Phys. Rev.D 77 (2008) 055018 [arXiv:0711.0828] [INSPIRE].
[61] I. Low and A. Vichi, On the production of a composite Higgs boson, Phys. Rev.D 84 (2011) 045019 [arXiv:1010.2753] [INSPIRE].
[62] A. Azatov and J. Galloway, Light Custodians and Higgs Physics in Composite Models, Phys. Rev.D 85 (2012) 055013 [arXiv:1110.5646] [INSPIRE].
[63] M. Gillioz, R. Grober, C. Grojean, M. Muhlleitner and E. Salvioni, Higgs Low-Energy Theorem (and its corrections) in Composite Models, JHEP10 (2012) 004 [arXiv:1206.7120] [INSPIRE]. · doi:10.1007/JHEP10(2012)004
[64] M. Redi, Composite MFV and Beyond, Eur. Phys. J.C 72 (2012) 2030 [arXiv:1203.4220] [INSPIRE].
[65] R. Barbieri, D. Buttazzo, F. Sala, D.M. Straub and A. Tesi, A 125 GeV composite Higgs boson versus flavour and electroweak precision tests, JHEP05 (2013) 069 [arXiv:1211.5085] [INSPIRE]. · doi:10.1007/JHEP05(2013)069
[66] C. Degrande, J.-M. Gerard, C. Grojean, F. Maltoni and G. Servant, Non-resonant New Physics in Top Pair Production at Hadron Colliders, JHEP03 (2011) 125 [arXiv:1010.6304] [INSPIRE]. · doi:10.1007/JHEP03(2011)125
[67] H. Hesari and M.M. Najafabadi, Probing the Anomalous Couplings of the Top Quark with Gluon at the LHC and Tevatron, arXiv:1207.0339 [INSPIRE].
[68] C. Englert, A. Freitas, M. Spira and P.M. Zerwas, Constraining the Intrinsic Structure of Top-Quarks, Phys. Lett.B 721 (2013) 261 [arXiv:1210.2570] [INSPIRE].
[69] C. Degrande, J. Gerard, C. Grojean, F. Maltoni and G. Servant, Probing Top-Higgs Non-Standard Interactions at the LHC, JHEP07 (2012) 036 [Erratum ibid.1303 (2013) 032] [arXiv:1205.1065] [INSPIRE]. · doi:10.1007/JHEP07(2012)036
[70] S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 1., Phys. Rev.177 (1969) 2239 [INSPIRE]. · doi:10.1103/PhysRev.177.2239
[71] C.G. Callan Jr., S.R. Coleman, J. Wess and B. Zumino, Structure of phenomenological Lagrangians. 2., Phys. Rev.177 (1969) 2247 [INSPIRE]. · doi:10.1103/PhysRev.177.2247
[72] C. Burgess and D. London, Light spin one particles imply gauge invariance, hep-ph/9203215 [INSPIRE].
[73] A. Azatov, R. Contino and J. Galloway, Model-Independent Bounds on a Light Higgs, JHEP04 (2012) 127 [Erratum ibid.1304 (2013) 140] [arXiv:1202.3415] [INSPIRE]. · doi:10.1007/JHEP04(2012)127
[74] R. Alonso, M. Gavela, L. Merlo, S. Rigolin and J. Yepes, The Effective Chiral Lagrangian for a Light Dynamical ’Higgs’, Phys. Lett.B 722 (2013) 330 [arXiv:1212.3305] [INSPIRE]. · Zbl 1306.81366
[75] R. Contino, C. Grojean, D. Pappadopulo, R. Rattazzi, A. Thamm, Strong Higgs interactions at a Linear Collider, work in progress.
[76] G. Passarino, NLO Inspired Effective Lagrangians for Higgs Physics, Nucl. Phys.B 868 (2013) 416 [arXiv:1209.5538] [INSPIRE]. · Zbl 1262.81246 · doi:10.1016/j.nuclphysb.2012.11.018
[77] S. Weinberg, Phenomenological Lagrangians, PhysicaA 96 (1979) 327 [INSPIRE].
[78] C. Grojean, E.E. Jenkins, A.V. Manohar and M. Trott, Renormalization Group Scaling of Higgs Operators and Γ(h → γγ), JHEP04 (2013) 016 [arXiv:1301.2588] [INSPIRE]. · Zbl 1342.81342 · doi:10.1007/JHEP04(2013)016
[79] J. Elias-Miro, J. Espinosa, E. Masso and A. Pomarol, Renormalization of dimension-six operators relevant for the Higgs decays h → γγ, γZ, arXiv:1302.5661 [INSPIRE].
[80] R. Barbieri, B. Bellazzini, V.S. Rychkov and A. Varagnolo, The Higgs boson from an extended symmetry, Phys. Rev.D 76 (2007) 115008 [arXiv:0706.0432] [INSPIRE].
[81] A. Pomarol and J. Serra, Top Quark Compositeness: Feasibility and Implications, Phys. Rev.D 78 (2008) 074026 [arXiv:0806.3247] [INSPIRE].
[82] S.L. Adler, J.C. Collins and A. Duncan, Energy-Momentum-Tensor Trace Anomaly in Spin 1/2 Quantum Electrodynamics, Phys. Rev.D 15 (1977) 1712 [INSPIRE].
[83] J.C. Collins, A. Duncan and S.D. Joglekar, Trace and Dilatation Anomalies in Gauge Theories, Phys. Rev.D 16 (1977) 438 [INSPIRE].
[84] N. Nielsen, The Energy Momentum Tensor in a Nonabelian Quark Gluon Theory, Nucl. Phys.B 120 (1977) 212 [INSPIRE]. · doi:10.1016/0550-3213(77)90040-2
[85] M. Farina, C. Grojean, F. Maltoni, E. Salvioni and A. Thamm, Lifting degeneracies in Higgs couplings using single top production in association with a Higgs boson, JHEP05 (2013) 022 [arXiv:1211.3736] [INSPIRE]. · doi:10.1007/JHEP05(2013)022
[86] K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Decoupling relations to \(O\left( {\alpha_S^3} \right)\) and their connection to low-energy theorems, Nucl. Phys.B 510 (1998) 61 [hep-ph/9708255] [INSPIRE].
[87] M. Krämer, E. Laenen and M. Spira, Soft gluon radiation in Higgs boson production at the LHC, Nucl. Phys.B 511 (1998) 523 [hep-ph/9611272] [INSPIRE]. · doi:10.1016/S0550-3213(97)00679-2
[88] Y. Schröder and M. Steinhauser, Four-loop decoupling relations for the strong coupling, JHEP01 (2006) 051 [hep-ph/0512058] [INSPIRE]. · doi:10.1088/1126-6708/2006/01/051
[89] K. Chetyrkin, J.H. Kuhn and C. Sturm, QCD decoupling at four loops, Nucl. Phys.B 744 (2006) 121 [hep-ph/0512060] [INSPIRE]. · doi:10.1016/j.nuclphysb.2006.03.020
[90] T. Inami, T. Kubota and Y. Okada, Effective gauge theory and the effect of heavy quarks in Higgs boson decays, Z. Phys.C 18 (1983) 69 [INSPIRE].
[91] A. Djouadi, M. Spira and P. Zerwas, Production of Higgs bosons in proton colliders: QCD corrections, Phys. Lett.B 264 (1991) 440 [INSPIRE].
[92] K. Chetyrkin, B.A. Kniehl and M. Steinhauser, Hadronic Higgs decay to order \(\alpha_S^4 \), Phys. Rev. Lett.79 (1997) 353 [hep-ph/9705240] [INSPIRE]. · doi:10.1103/PhysRevLett.79.353
[93] M. Spira, A. Djouadi, D. Graudenz and P. Zerwas, Higgs boson production at the LHC, Nucl. Phys.B 453 (1995) 17 [hep-ph/9504378] [INSPIRE]. · doi:10.1016/0550-3213(95)00379-7
[94] P. Baikov and K. Chetyrkin, Higgs Decay into Hadrons to Order \(\alpha_S^5 \), Phys. Rev. Lett.97 (2006) 061803 [hep-ph/0604194] [INSPIRE]. · doi:10.1103/PhysRevLett.97.061803
[95] J.F. Gunion and H.E. Haber, The CP conserving two Higgs doublet model: The Approach to the decoupling limit, Phys. Rev.D 67 (2003) 075019 [hep-ph/0207010] [INSPIRE].
[96] L. Randall, Two Higgs Models for Large Tan Beta and Heavy Second Higgs, JHEP02 (2008) 084 [arXiv:0711.4360] [INSPIRE]. · doi:10.1088/1126-6708/2008/02/084
[97] J. Gunion and H.E. Haber, Higgs Bosons in Supersymmetric Models. 1., Nucl. Phys.B 272 (1986) 1 [Erratum ibid.B 402 (1993) 567] [INSPIRE]. · doi:10.1016/0550-3213(86)90340-8
[98] K. Blum, R.T. D’Agnolo and J. Fan, Natural SUSY Predicts: Higgs Couplings, JHEP01 (2013) 057 [arXiv:1206.5303] [INSPIRE]. · doi:10.1007/JHEP01(2013)057
[99] A. Azatov and J. Galloway, Electroweak Symmetry Breaking and the Higgs Boson: Confronting Theories at Colliders, Int. J. Mod. Phys.A 28 (2013) 1330004 [arXiv:1212.1380] [INSPIRE].
[100] T. Appelquist and C.W. Bernard, Strongly Interacting Higgs Bosons, Phys. Rev.D 22 (1980) 200 [INSPIRE].
[101] A.C. Longhitano, Heavy Higgs Bosons in the Weinberg-Salam Model, Phys. Rev.D 22 (1980) 1166 [INSPIRE].
[102] A.C. Longhitano, Low-Energy Impact of a Heavy Higgs Boson Sector, Nucl. Phys.B 188 (1981) 118 [INSPIRE]. · doi:10.1016/0550-3213(81)90109-7
[103] C. Baker et al., An Improved experimental limit on the electric dipole moment of the neutron, Phys. Rev. Lett.97 (2006) 131801 [hep-ex/0602020] [INSPIRE]. · doi:10.1103/PhysRevLett.97.131801
[104] W. Griffith, M. Swallows, T. Loftus, M. Romalis, B. Heckel and E. N. Fortson, Improved Limit on the Permanent Electric Dipole Moment of Hg-199, Phys. Rev. Lett.102 (2009) 101601 [INSPIRE]. · doi:10.1103/PhysRevLett.102.101601
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.