×

zbMATH — the first resource for mathematics

An element-free Galerkin method based on complex variable moving Kriging interpolation for potential problems. (English) Zbl 1359.65256
MSC:
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Atluri, S. N. and Zhu, T. [1998] ” A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech.22, 117-127. genRefLink(16, ’S0219876216500134BIB001’, ’10.1007%252Fs004660050346’); genRefLink(128, ’S0219876216500134BIB001’, ’000075918000001’); · Zbl 0932.76067
[2] Belytschko, T., Lu, Y. Y. and Gu, L. [1994] ” Element-free Galerkin methods,” Int. J. Numer. Methods Eng.37, 229-256. genRefLink(16, ’S0219876216500134BIB002’, ’10.1002%252Fnme.1620370205’); genRefLink(128, ’S0219876216500134BIB002’, ’A1994MR17400004’);
[3] Bui, T. Q., Nguyen, M. N. and Zhang, C. Z. [2011] ” A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis,” Comput. Methods Apple. Mech. Eng.200, 1354-1366. genRefLink(16, ’S0219876216500134BIB003’, ’10.1016%252Fj.cma.2010.12.017’); genRefLink(128, ’S0219876216500134BIB003’, ’000288884900002’); · Zbl 1228.74110
[4] Chati, M. K. and Mukherjee, S. [2000] ” The boundary node method for three-dimensional problems in potential theory,” Int. J. Numer. Methods Eng.47, 1523-1547. genRefLink(16, ’S0219876216500134BIB004’, ’10.1002%252F%2528SICI%25291097-0207%252820000330%252947%253A9%253C1523%253A%253AAID-NME836%253E3.0.CO%253B2-T’); genRefLink(128, ’S0219876216500134BIB004’, ’000085900300001’); · Zbl 0961.65100
[5] Chati, M. K., Mukherjee, S. and Mukherjee, Y. X. [1999] ” The boundary node method for three-dimensional linear elasticity,” Int. J. Numer. Methods Eng.46, 1163-1184. genRefLink(16, ’S0219876216500134BIB005’, ’10.1002%252F%2528SICI%25291097-0207%252819991120%252946%253A8%253C1163%253A%253AAID-NME742%253E3.0.CO%253B2-Y’); genRefLink(128, ’S0219876216500134BIB005’, ’000083501800001’); · Zbl 0951.74075
[6] Chen, L. and Liew, K. M. [2011] ” A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems,” Comput. Mech.47, 455-467. genRefLink(16, ’S0219876216500134BIB006’, ’10.1007%252Fs00466-010-0553-6’); genRefLink(128, ’S0219876216500134BIB006’, ’000288551100006’);
[7] Cheng, Y. M. and Chen, M. J. [2003] ” A boundary element-free method for linear elasticity,” Acta Mech. Sin.35, 181-186.
[8] Cheng, Y. M. and Peng, M. J. [2005] ” Boundary element-free method for elastodynamics,” Sci. China Ser. G Phys. Mech. Astron.48, 641-657. genRefLink(16, ’S0219876216500134BIB008’, ’10.1360%252F142004-25’); genRefLink(128, ’S0219876216500134BIB008’, ’000235013100001’);
[9] Cheng, Y. M., Li, R. X. and Peng, M. J. [2012a] ” Complex variable element-free Galerkin method for viscoelasticity problems,” Chin. Phys. B21, 090205. genRefLink(16, ’S0219876216500134BIB009’, ’10.1088%252F1674-1056%252F21%252F9%252F090205’); genRefLink(128, ’S0219876216500134BIB009’, ’000308870300005’);
[10] Cheng, Y. M., Wang, J. F. and Bai, F. N. [2012b] ” A new complex variable element-free Galerkin method for two-dimensional potential problems,” Chin. Phys. B21, 090203. genRefLink(16, ’S0219876216500134BIB010’, ’10.1088%252F1674-1056%252F21%252F9%252F090203’); genRefLink(128, ’S0219876216500134BIB010’, ’000308870300003’);
[11] Cho, J. Y., Song, Y. M. and Choi, Y. H. [2008] ” Boundary locking induced by penalty enforcement of essential boundary conditions in Mesh-free methods,” Comput. Methods Appl. Mech. Eng.197, 1167-1183. genRefLink(16, ’S0219876216500134BIB011’, ’10.1016%252Fj.cma.2007.09.020’); genRefLink(128, ’S0219876216500134BIB011’, ’000253568400001’); · Zbl 1159.65361
[12] Deng, Y. J., Liu, C., Peng, M. J. and Cheng, Y. M. [2015] ” The interpolating complex variable element-free Galerkin method for temperature field problems,” Int. J. Appl. Mech.7, 1550017. [Abstract] genRefLink(128, ’S0219876216500134BIB012’, ’000353550100002’);
[13] Gu, L. [2003] ” Moving Kriging interpolation and element-free Galerkin method,” Int. J. Numer. Methods Eng.56, 1-11. genRefLink(16, ’S0219876216500134BIB013’, ’10.1002%252Fnme.553’); genRefLink(128, ’S0219876216500134BIB013’, ’000180025000001’);
[14] Gu, Y. T. and Liu, G. R. [2001] ” A local point interpolation method for static and dynamic analysis of thin beams,” Comput. Methods Appl. Mech. Eng.190, 5515-5528. genRefLink(16, ’S0219876216500134BIB014’, ’10.1016%252FS0045-7825%252801%252900180-3’); genRefLink(128, ’S0219876216500134BIB014’, ’000170326900005’); · Zbl 1059.74060
[15] Han, Z. D. and Atluri, S. N. [2004] ” A meshless local Petrov-Galerkin (MLPG) approach for 3-dimensional elasto-dynamics,” Comput. Mater. Continua1, 129-140. genRefLink(128, ’S0219876216500134BIB015’, ’000227719200002’); · Zbl 1181.74152
[16] Kothnur, V. S., Mukherjee, S. and Mukherjee, Y. X. [1999] ” Two-dimensional linear elasticity by the boundary node method,” Int. J. Solids Struct.36, 1129-1147. genRefLink(16, ’S0219876216500134BIB016’, ’10.1016%252FS0020-7683%252897%252900363-6’); genRefLink(128, ’S0219876216500134BIB016’, ’000078287900002’); · Zbl 0937.74074
[17] Lancaster, P. and Salkauskas, K. [1981] ” Surfaces generated by moving least squares methods,” Mathematics of Comput.37, 141-158. genRefLink(16, ’S0219876216500134BIB017’, ’10.1090%252FS0025-5718-1981-0616367-1’); genRefLink(128, ’S0219876216500134BIB017’, ’A1981MB34000012’); · Zbl 0469.41005
[18] Li, X. G., Dai, B. D. and Wang, L. H. [2010] ” A moving Kriging interpolation-based boundary node method for two-dimensional potential problems,” Chin. Phys. B19, 120202. genRefLink(16, ’S0219876216500134BIB018’, ’10.1088%252F1674-1056%252F19%252F12%252F120202’); genRefLink(128, ’S0219876216500134BIB018’, ’000285151400002’);
[19] Liew, K. M. and Cheng, Y. M. [2009] ” Complex variable boundary element-free method for two-dimensional elastodynamic problems,” Comput. Methods Appl. Mech. Eng.198, 3925-3933. genRefLink(16, ’S0219876216500134BIB019’, ’10.1016%252Fj.cma.2009.08.020’); genRefLink(128, ’S0219876216500134BIB019’, ’000272125200005’); · Zbl 1231.74502
[20] Liew, K. M., Cheng, Y. M. and Kitipornchai, S. [2005] ” Boundary element-free method (BEFM) for two-dimensional elastodynamic analysis using Laplace transform,” Int. J. Numer. Methods Eng.64, 1610-1627. genRefLink(16, ’S0219876216500134BIB020’, ’10.1002%252Fnme.1417’); genRefLink(128, ’S0219876216500134BIB020’, ’000233728600004’); · Zbl 1122.74533
[21] Liew, K. M., Cheng, Y. M. and Kitipornchai, S. [2006] ” Boundary element-free method (BEFM) and its application to two-dimensional elasticity problems,” Int. J. Numer. Methods Eng.65, 1310-1332. genRefLink(16, ’S0219876216500134BIB021’, ’10.1002%252Fnme.1489’); genRefLink(128, ’S0219876216500134BIB021’, ’000235320300007’); · Zbl 1147.74047
[22] Liu, G. R. and Liu, M. B. [2003] Smoothed Particle Hydrodynamics: A Meshfree Particle Method (World Scientific, Singapore). genRefLink(16, ’S0219876216500134BIB022’, ’10.1142%252F9789812564405’);
[23] Liu, G. R., Li, Y., Dai, K. Y., Luan, M. T. and Xue, W. [2006] ” A linearly conforming radial point interpolation method for solid mechanics problems,” Int. J. Comput. Methods3, 401-428. [Abstract] genRefLink(128, ’S0219876216500134BIB023’, ’000207553200002’); · Zbl 1198.74120
[24] Liu, G. R., Zhang, G. Y., Dai, K. Y., Wang, Y. Y., Zhong, Z. H., Li, G. Y. et al. [2005] ” A linearly conforming point interpolation method (Lc-Pim) for 2D solid mechanics problems,” Int. J. Comput. Methods2, 645-665. [Abstract] genRefLink(128, ’S0219876216500134BIB024’, ’000207552800011’); · Zbl 1137.74303
[25] Liu, W. K., Jun, S. and Zhang, Y. F. [1995] ” Reproducing kernel particle methods,” Int. J. Numer. Methods Fluids20, 1081-1106. genRefLink(16, ’S0219876216500134BIB025’, ’10.1002%252Ffld.1650200824’); genRefLink(128, ’S0219876216500134BIB025’, ’A1995QX11300024’);
[26] Lu, Y. Y., Belytschko, T. and Gu, L. [1994] ” A new implementation of the element free Galerkin method,” Comput. Methods Appl. Mech. Eng.113, 397-414. genRefLink(16, ’S0219876216500134BIB026’, ’10.1016%252F0045-7825%252894%252990056-6’); genRefLink(128, ’S0219876216500134BIB026’, ’A1994ND98300010’);
[27] Lucy, L. B. [1977] ” A numerical approach to the testing of the fission hypothesis,” Astron. J.82, 1013-1024. genRefLink(16, ’S0219876216500134BIB027’, ’10.1086%252F112164’); genRefLink(128, ’S0219876216500134BIB027’, ’A1977EF31200015’);
[28] Mukherjee, Y. X. and Mukherjee, S. [1997a] ” On boundary conditions in the element-free Galerkin method,” Comput. Mech.19, 264-270. genRefLink(16, ’S0219876216500134BIB028’, ’10.1007%252Fs004660050175’); genRefLink(128, ’S0219876216500134BIB028’, ’A1997WU69300002’);
[29] Mukherjee, Y. X. and Mukherjee, S. [1997b] ” The boundary node method for potential problems,” Int. J. Numer. Methods Eng.40, 797-815. genRefLink(16, ’S0219876216500134BIB029’, ’10.1002%252F%2528SICI%25291097-0207%252819970315%252940%253A5%253C797%253A%253AAID-NME89%253E3.0.CO%253B2-%2523’); genRefLink(128, ’S0219876216500134BIB029’, ’A1997WG52400002’); · Zbl 0885.65124
[30] Nayroles, B., Touzot, G. and Villon, P. [1991] ” The diffuse elements method,” Comptes Rendus De L Academie Des Sciences Serie Ii313, 133-138. genRefLink(128, ’S0219876216500134BIB030’, ’A1991FX56400001’); · Zbl 0725.73085
[31] Peng, M. J. and Cheng, Y. M. [2009a] ” A boundary element-free method (BEFM) for two-dimensional potential problems,” Eng. Anal. Boundary Elem.33, 77-82. genRefLink(16, ’S0219876216500134BIB031’, ’10.1016%252Fj.enganabound.2008.03.005’); genRefLink(128, ’S0219876216500134BIB031’, ’000262016300008’); · Zbl 1160.65348
[32] Peng, M. J. and Liu, Q. [2014] ” Improved complex variable element-free Galerkin method for viscoelasticity problems,” Acta Phys. Sin.63, 180203.
[33] Peng, M. J., Liu, P. and Cheng, Y. M. [2009b] ” The complex variable element-free Galerkin (Cvefg) method for two-dimensional elasticity problems,” Int. J. Appl. Mech.1, 367-385. [Abstract] genRefLink(128, ’S0219876216500134BIB033’, ’000207921300007’);
[34] Ren, H. P., Cheng, Y. M. and Zhang, W. [2009] ” An improved boundary element-free method (IBEFM) for two-dimensional potential problems,” Chin. Phys. B18, 4065-4073. genRefLink(16, ’S0219876216500134BIB034’, ’10.1088%252F1674-1056%252F18%252F5%252F006’); genRefLink(128, ’S0219876216500134BIB034’, ’000270300600002’);
[35] Ren, H. P., Cheng, Y. M. and Zhang, W. [2010] ” An interpolating boundary element-free method (IBEFM) for elasticity problems,” Sci. Chin. Phys. Mech. Astron.53, 758-766. genRefLink(16, ’S0219876216500134BIB035’, ’10.1007%252Fs11433-010-0159-1’); genRefLink(128, ’S0219876216500134BIB035’, ’000276776100020’);
[36] Sacks, J., Welch, W. J., Mitchell, T. J. and Wynn, H. P. [1989] ” Design and analysis of computer experiments,” Stat. Sci.4, 409-423. genRefLink(16, ’S0219876216500134BIB036’, ’10.1214%252Fss%252F1177012413’); · Zbl 0955.62619
[37] Yimnak, K. and Luadsong, A. [2014] ” A local integral equation formulation based on moving Kriging interpolation for solving coupled nonlinear reaction-diffusion equations,” Adv. Math. Phys.2014, 196041. genRefLink(16, ’S0219876216500134BIB037’, ’10.1155%252F2014%252F196041’); genRefLink(128, ’S0219876216500134BIB037’, ’000337397600001’); · Zbl 1302.65227
[38] Zhang, Z., Wang, J. F., Cheng, Y. M. and Liew, K. M. [2013a] ” The improved element-free Galerkin method for three-dimensional transient heat conduction problems,” Sci. Chin. Phys. Mech. Astron.56, 1568-1580. genRefLink(16, ’S0219876216500134BIB038’, ’10.1007%252Fs11433-013-5135-0’); genRefLink(128, ’S0219876216500134BIB038’, ’000321871800020’);
[39] Zhang, Z., Hao, S. Y., Liew, K. M. and Cheng, Y. M. [2013b] ” The improved element-free Galerkin method for two-dimensional elastodynamics problems,” Eng. Anal. Boundary Elem.37, 1576-1584. genRefLink(16, ’S0219876216500134BIB039’, ’10.1016%252Fj.enganabound.2013.08.017’); genRefLink(128, ’S0219876216500134BIB039’, ’000327922300002’); · Zbl 1287.74055
[40] Zheng, B. J. and Dai, B. D. [2011] ” A meshless local moving Kriging method for two-dimensional solids,” Appl. Math. Comput.218, 563-573. genRefLink(16, ’S0219876216500134BIB040’, ’10.1016%252Fj.amc.2011.05.100’); genRefLink(128, ’S0219876216500134BIB040’, ’000293009400036’);
[41] Zhu, T., Zhang, J. and Atluri, S. N. [1998a] ” A meshless local boundary integral equation (LBIE) method for solving nonlinear problems,” Comput. Mech.22, 174-186. genRefLink(16, ’S0219876216500134BIB041’, ’10.1007%252Fs004660050351’); genRefLink(128, ’S0219876216500134BIB041’, ’000075918000006’); · Zbl 0924.65105
[42] Zhu, T., Zhang, J. D. and Atluri, S. N. [1998b] ” A local boundary integral equation (LBIE) method in computational mechanics, and a meshless discretization approach,” Comput. Mech.21, 223-235. genRefLink(16, ’S0219876216500134BIB042’, ’10.1007%252Fs004660050297’); genRefLink(128, ’S0219876216500134BIB042’, ’000073614200003’); · Zbl 0920.76054
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.