×

zbMATH — the first resource for mathematics

Quasi-static crack propagation modeling using shape-free hybrid stress-function elements with drilling degrees of freedom. (English) Zbl 1359.74373
MSC:
74R10 Brittle fracture
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
Software:
XFEM
PDF BibTeX XML Cite
Full Text: DOI
References:
[1] Allman, D. J. [1984] ” A compatible triangular element including vertex rotations for plane elasticity analysis,” Comput. Struct.19(1), 1-8. genRefLink(16, ’S0219876216500146BIB001’, ’10.1016%252F0045-7949%252884%252990197-4’); genRefLink(128, ’S0219876216500146BIB001’, ’A1984TQ58400002’);
[2] Barsoum, R. S. [1976] ” On the use of isoparametric finite elements in linear fracture mechanics,” Int. J. Numer. Methods Eng.10(1), 25-37. genRefLink(16, ’S0219876216500146BIB002’, ’10.1002%252Fnme.1620100103’); genRefLink(128, ’S0219876216500146BIB002’, ’A1975BB46800002’);
[3] Barsoum, R. S. [1977] ” Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements,” Int. J. Numer. Methods Eng.11(1), 85-98. genRefLink(16, ’S0219876216500146BIB003’, ’10.1002%252Fnme.1620110109’); genRefLink(128, ’S0219876216500146BIB003’, ’A1977CT58700007’);
[4] Belytschko, T. and Black, T. [1999] ” Elastic crack growth in finite elements with minimal remeshing,” Int. J. Numer. Methods Eng.45(5), 601-620. genRefLink(16, ’S0219876216500146BIB004’, ’10.1002%252F%2528SICI%25291097-0207%252819990620%252945%253A5%253C601%253A%253AAID-NME598%253E3.0.CO%253B2-S’); genRefLink(128, ’S0219876216500146BIB004’, ’000080421700005’); · Zbl 0943.74061
[5] Belytschko, T. and Chen, H. [2004] ” Singular enrichment finite element method for elastodynamic crack propagation,” Int. J. Comput. Methods1(1), 1-15. [Abstract] genRefLink(128, ’S0219876216500146BIB005’, ’000207552200001’); · Zbl 1076.74051
[6] Belytschko, T., Moes, N., Usui, S. and Parimi, C. [2001] ” Arbitrary discontinuities in finite elements,” Int. J. Numer. Methods Eng.50(4), 993-1013. genRefLink(16, ’S0219876216500146BIB006’, ’10.1002%252F1097-0207%252820010210%252950%253A4%253C993%253A%253AAID-NME164%253E3.0.CO%253B2-M’); genRefLink(128, ’S0219876216500146BIB006’, ’000166732600013’); · Zbl 0981.74062
[7] Benvenuti, E., Tralli, A. and Ventura, G. [2008] ” A regularized XFEM model for the transition from continuous to discontinuous displacements,” Int. J. Numer. Methods Eng.74(6), 911-944. genRefLink(16, ’S0219876216500146BIB007’, ’10.1002%252Fnme.2196’); genRefLink(128, ’S0219876216500146BIB007’, ’000255697600003’); · Zbl 1158.74479
[8] Bittencourt, T. N., Wawrzynek, P. A., Ingraffea, A. R. and Sousa, J. L. [1996] ” Quasi-automatic simulation of crack propagation for 2D LEFM problems,” Eng. Fracture Mech.55(2), 321-334. genRefLink(16, ’S0219876216500146BIB008’, ’10.1016%252F0013-7944%252895%252900247-2’); genRefLink(128, ’S0219876216500146BIB008’, ’A1996VE46200011’);
[9] Bordas , Stéphane, P. A., Rabczuk, T., Hung, N. X., Nguyen, V. P., Natarajan, S., Bog, T. and Nguyen, V. H. [2010] ” Strain smoothing in FEM and XFEM,” Comput. Struct.88(23-24), 1419-1443. genRefLink(16, ’S0219876216500146BIB009’, ’10.1016%252Fj.compstruc.2008.07.006’); genRefLink(128, ’S0219876216500146BIB009’, ’000284439300013’);
[10] Bordas, S. P. A., Natarajan, S., Kerfriden, P., Augarde, C. E., Mahapatra, D. R., Rabczuk, T. and Pont, S. D. [2011] ” On the performance of strain smoothing for quadratic and enriched finite element approximations (XFEM/GFEM/PUFEM),” Int. J. Numer. Methods Eng.86(4-5), 637-666. genRefLink(16, ’S0219876216500146BIB010’, ’10.1002%252Fnme.3156’); genRefLink(128, ’S0219876216500146BIB010’, ’000288871900013’); · Zbl 1216.74019
[11] Byfut, A. and Schröder, A. [2012] ” hp-adaptive extended finite element method,” Int. J. Numer. Methods Eng.89(11), 1392-1418. genRefLink(16, ’S0219876216500146BIB011’, ’10.1002%252Fnme.3293’); genRefLink(128, ’S0219876216500146BIB011’, ’000300700400003’); · Zbl 1242.74099
[12] Cen, S., Fu, X. R. and Zhou, M. J. [2011a] ” 8-and 12-node plane hybrid stress-function elements immune to severely distorted mesh containing elements with concave shapes,” Computer Methods Appl. Mech. Eng.200(26), 2321-2336. genRefLink(16, ’S0219876216500146BIB012’, ’10.1016%252Fj.cma.2011.04.014’); genRefLink(128, ’S0219876216500146BIB012’, ’000291902600001’); · Zbl 1230.74173
[13] Cen, S., Fu, X. R., Zhou, G. H., Zhou, M. J. and Li, C. F. [2011b] ” Shape-free finite element method: The plane hybrid stress-function (HS-F) element method for anisotropic materials,” Sci. China Phys. Mech. Astron.54(4), 653-665. genRefLink(16, ’S0219876216500146BIB013’, ’10.1007%252Fs11433-011-4272-6’); genRefLink(128, ’S0219876216500146BIB013’, ’000289006000014’);
[14] Cen, S., Zhou, M. J. and Fu, X. R. [2011c] ” A 4-node hybrid stress-function (HS-F) plane element with drilling degrees of freedom less sensitive to severe mesh distortions,” Comput. Struct.89(5), 517-528. genRefLink(16, ’S0219876216500146BIB014’, ’10.1016%252Fj.compstruc.2010.12.010’); genRefLink(128, ’S0219876216500146BIB014’, ’000287432400008’);
[15] Cen, S., Zhou, M. J. and Shang, Y. [2013] ” Shape-free finite element method: Another way between mesh and mesh-free methods,” Math. Problems Eng.2013, Article ID 491626 (14 pages). genRefLink(16, ’S0219876216500146BIB015’, ’10.1155%252F2013%252F491626’); genRefLink(128, ’S0219876216500146BIB015’, ’000324415900001’);
[16] Cheng, K. W. and Fries, T. P. [2010] ” Higher-order XFEM for curved strong and weak discontinuities,” Int. J. Numer. Methods Eng.82(5), 564-590. genRefLink(128, ’S0219876216500146BIB016’, ’000276965900002’); · Zbl 1188.74052
[17] Chen, L., Liu, G. R. and Zeng, K. Y. [2011] ” A combined extended and edge-based smoothed finite element method(ES-FEM) for fracture analysis of 2D elasticity,” Int. J. Comput. Methods8(4), 773-786. [Abstract] genRefLink(128, ’S0219876216500146BIB017’, ’000296781200010’); · Zbl 1245.74081
[18] Chessa, J., Wang, H. W. and Belytschko, T. [2003] ” On the construction of blending elements for local partition of unity enriched finite elements,” Int. J. Numer. Methods Eng.57(7), 1015-1038. genRefLink(16, ’S0219876216500146BIB018’, ’10.1002%252Fnme.777’); genRefLink(128, ’S0219876216500146BIB018’, ’000183603700006’); · Zbl 1035.65122
[19] Daux, C., Moes, N., Dolbow, J., Sukumar, N. and Belytschko, T. [2000] ” Arbitrary branched and intersecting cracks with the extended finite element method,” Int. J. Numer. Methods Eng.48(12), 1741-1760. genRefLink(16, ’S0219876216500146BIB019’, ’10.1002%252F1097-0207%252820000830%252948%253A12%253C1741%253A%253AAID-NME956%253E3.0.CO%253B2-L’); genRefLink(128, ’S0219876216500146BIB019’, ’000088687200004’); · Zbl 0989.74066
[20] DeFreitas, J. A. T. and Ji, Z. Y. [1996] ” Hybrid-Trefftz equilibrium model for crack problems,” Int. J. Numer. Methods Eng.39(4), 569-584. genRefLink(16, ’S0219876216500146BIB020’, ’10.1002%252F%2528SICI%25291097-0207%252819960229%252939%253A4%253C569%253A%253AAID-NME870%253E3.0.CO%253B2-8’); genRefLink(128, ’S0219876216500146BIB020’, ’A1996TW13200002’);
[21] Dujc, J., Brank, B. and Ibrahimbegovic, A. [2013] ” Stress-hybrid quadrilateral finite element with embedded strong discontinuity for failure analysis of plane stress solids,” Int. J. Numer. Methods Eng.94(12), 1075-1098. genRefLink(16, ’S0219876216500146BIB021’, ’10.1002%252Fnme.4475’); genRefLink(128, ’S0219876216500146BIB021’, ’000319066200001’); · Zbl 1352.74346
[22] Fan, Z. and Long, Y. Q. [1992] ” Sub-region mixed finite-element analysis of V-notched plates,” Int. J. Fract.56(4), 333-344. genRefLink(16, ’S0219876216500146BIB022’, ’10.1007%252FBF00015863’); genRefLink(128, ’S0219876216500146BIB022’, ’A1992JN15600004’);
[23] Fries, T. P. and Baydoun, M. [2012] ” Crack propagation with the extended finite element method and a hybrid explicit-implicit crack description,” Int. J. Numer. Methods Eng.89(12), 1527-1558. genRefLink(16, ’S0219876216500146BIB023’, ’10.1002%252Fnme.3299’); genRefLink(128, ’S0219876216500146BIB023’, ’000300701400003’); · Zbl 1242.74113
[24] Fries, T. P. and Belytschko, T. [2006] ” The intrinsic XFEM: A method for arbitrary discontinuities without additional unknowns,” Int. J. Numer. Methods Eng.68(13), 1358-1385. genRefLink(16, ’S0219876216500146BIB024’, ’10.1002%252Fnme.1761’); genRefLink(128, ’S0219876216500146BIB024’, ’000243342700003’); · Zbl 1129.74045
[25] Fries, T. P. and Belytschko, T. [2010] ” The extended/generalized finite element method: An overview of the method and its applications,” Int. J. Numer. Methods Eng.84(3), 253-304. genRefLink(128, ’S0219876216500146BIB025’, ’000283202200001’); · Zbl 1202.74169
[26] Fu, X. R., Cen, S., Li, C. F. and Chen, X. M. [2010] ” Analytical trial function method for development of new 8-node plane element based on the variational principle containing Airy stress function,” Eng. Comput.27(4), 442-463. genRefLink(16, ’S0219876216500146BIB026’, ’10.1108%252F02644401011044568’); genRefLink(128, ’S0219876216500146BIB026’, ’000281276000007’); · Zbl 1257.74149
[27] Geniaut, S. and Galenne, E. [2012] ” A simple method for crack growth in mixed mode with X-FEM,” Int. J. Solids Struct.49(15), 2094-2106. genRefLink(16, ’S0219876216500146BIB027’, ’10.1016%252Fj.ijsolstr.2012.04.015’); genRefLink(128, ’S0219876216500146BIB027’, ’000306206500008’);
[28] Henshell, R. D. and Shaw, K. G. [1975] ” Crack tip finite elements are unnecessary,” Int. J. Numer. Methods Eng.9(3), 495-507. genRefLink(16, ’S0219876216500146BIB028’, ’10.1002%252Fnme.1620090302’); · Zbl 0306.73064
[29] Huang, M. F. and Yuqiu, L. [1988] ” Calculation of stress intensity factors of cracked Reissner plates by the sub-region mixed finite element method,” Comput. Struct.30(4), 837-840. genRefLink(16, ’S0219876216500146BIB029’, ’10.1016%252F0045-7949%252888%252990113-7’); genRefLink(128, ’S0219876216500146BIB029’, ’A1988R350100011’); · Zbl 0671.73080
[30] Karihaloo, B. L. and Xiao, Q. Z. [2001] ” Accurate determination of the coefficients of elastic crack tip asymptotic field by a hybrid crack element with p-adaptivity,” Eng. Fracture Mech.68(15), 1609-1630. genRefLink(16, ’S0219876216500146BIB030’, ’10.1016%252FS0013-7944%252801%252900063-7’); genRefLink(128, ’S0219876216500146BIB030’, ’000171352400001’);
[31] Laborde, P., Pommier, J., Renard, Y. and Salaün, M. [2005] ” High-order extended finite element method for cracked domains,” Int. J. Numer. Methods Eng.64(3), 354-381. genRefLink(16, ’S0219876216500146BIB031’, ’10.1002%252Fnme.1370’); genRefLink(128, ’S0219876216500146BIB031’, ’000231890300005’); · Zbl 1181.74136
[32] Legay, A., Wang, H. W. and Belytschko, T. [2005] ” Strong and weak arbitrary discontinuities in spectral finite elements,” Int. J. Numer. Methods Eng.64(8), 991-1008. genRefLink(16, ’S0219876216500146BIB032’, ’10.1002%252Fnme.1388’); genRefLink(128, ’S0219876216500146BIB032’, ’000232869200001’); · Zbl 1167.74045
[33] Liu, G. R. [2008a] ” A generalized gradient smoothing technique and the smoothed bilinear form for galerkin formulation of a wild class of computational methods,” Int. J. Comput. Methods5(2), 199-236. [Abstract] genRefLink(128, ’S0219876216500146BIB033’, ’000267111800001’); · Zbl 1222.74044
[34] Liu, G. R., Chen, L. and Li, M. [2014] ” S-FEM for fracture problems, threory, formulation and application,” Int. J. Comput. Methods11(3), 1343003. [Abstract] genRefLink(128, ’S0219876216500146BIB034’, ’000334558000003’);
[35] Liu, G. R., Nourbakhshnia, N., Chen, L. and Zhang, Y. W. [2010] ” A novel general formulation for singular stress field using the ES-FEM method for the analysis of mixed-mode cracks,” Int. J. Comput. Methods7(1), 191-214. [Abstract] genRefLink(128, ’S0219876216500146BIB035’, ’000276672200009’); · Zbl 1267.74112
[36] Liu, G. R. and Zhang, Y. G. [2008b] ” Edge-based smoothed point interpolation methods,” Int. J. Comput. Methods5(4), 621-646. [Abstract] · Zbl 1264.74284
[37] Long, Y. Q. and Jun, Q. [1992] ” Calculation of stress intensity factors for surface cracks in a 3-dimensional body by the sub-region mixed fem,” Comput. Struct.44(1-2), 75-78. genRefLink(16, ’S0219876216500146BIB037’, ’10.1016%252F0045-7949%252892%252990225-O’); genRefLink(128, ’S0219876216500146BIB037’, ’A1992JH52400011’); · Zbl 0825.73738
[38] Long, Y. Q., Cen, S. and Long, Z. F. [2009] ” Advanced Finite Element Method in Structural Engineering, Springer-Verlag, GmbH: Berlin, Heidelberg. genRefLink(16, ’S0219876216500146BIB038’, ’10.1007%252F978-3-642-00316-5’); · Zbl 1168.74005
[39] Long, Y. Q. and Zhao, Y. Q. [1985] ” Technical note: Calculation of stress intensity factors in plane problems by the sub-region mixed finite element method,” Adv. Eng. Softw.7(1), 32-35. genRefLink(16, ’S0219876216500146BIB039’, ’10.1016%252F0141-1195%252885%252990091-9’); genRefLink(128, ’S0219876216500146BIB039’, ’A1985ATM5800006’);
[40] Lynn, P. P. and Ingraffea, A. R. [1978] ” Transition-elements to be used with quarter-point crack-tip elements,” Int. J. Numer. Methods Eng.12(6), 1031-1036. genRefLink(16, ’S0219876216500146BIB040’, ’10.1002%252Fnme.1620120612’); genRefLink(128, ’S0219876216500146BIB040’, ’A1978FD32900011’);
[41] Moes, N., Dolbow, J. and Belytschko, T. [1999] ” A finite element method for crack growth without remeshing,” Int. J. Numer. Methods Eng.46(1), 131-150. genRefLink(16, ’S0219876216500146BIB041’, ’10.1002%252F%2528SICI%25291097-0207%252819990910%252946%253A1%253C131%253A%253AAID-NME726%253E3.0.CO%253B2-J’); genRefLink(128, ’S0219876216500146BIB041’, ’000081969200008’); · Zbl 0955.74066
[42] Natarajan, S. and Song, C. M. [2013] ” Representation of singular fields without asymptotic enrichment in the extended finite element method,” Int. J. Numer. Methods Eng.96(13), 813-841. genRefLink(16, ’S0219876216500146BIB042’, ’10.1002%252Fnme.4557’); genRefLink(128, ’S0219876216500146BIB042’, ’000327368900001’); · Zbl 1352.74298
[43] Nguyen-Xuan, H., Liu, G. R., Bordas, S., Natarajan, S. and Rabczuk, T. [2013] ” An adaptive singular ES-FEM for mechanics problems with singular field of arbitrary order,” Comput. Methods Appl. Mech. Eng.253, 252-273. genRefLink(16, ’S0219876216500146BIB043’, ’10.1016%252Fj.cma.2012.07.017’); genRefLink(128, ’S0219876216500146BIB043’, ’000313134600017’); · Zbl 1297.74126
[44] Nguyen-Xuan, H., Liu, G. R., Nourbakhshnia, N. and Chen, L. [2012] ” A novel singular ES-FEM for crack growth simulation,” Eng. Fract. Mech.84, 41-66. genRefLink(16, ’S0219876216500146BIB044’, ’10.1016%252Fj.engfracmech.2012.01.001’); genRefLink(128, ’S0219876216500146BIB044’, ’000302847700004’);
[45] Nourbakhshnia, N. and Liu, G. R. [2011] ” A quasi-static crack growth simulation based on the singular ES-FEM,” Int. J. Numer. Methods Eng.88(5), 473-492. genRefLink(16, ’S0219876216500146BIB045’, ’10.1002%252Fnme.3186’); genRefLink(128, ’S0219876216500146BIB045’, ’000295226800003’); · Zbl 1242.74144
[46] Ooi, E. T., Song, C. M., Tin-Loi, F. and Yang, Z. J. [2012] ” Polygon scaled boundary finite elements for crack propagation modelling,” Int. J. Numer. Methods Eng.91(3), 319-342. genRefLink(16, ’S0219876216500146BIB046’, ’10.1002%252Fnme.4284’); genRefLink(128, ’S0219876216500146BIB046’, ’000305681300006’); · Zbl 1246.74062
[47] Ooi, E. T. and Yang, Z. J. [2010] ” A hybrid finite element-scaled boundary finite element method for crack propagation modelling,” Comput. Methods Apple. Mech. Eng.199(17-20), 1178-1192. genRefLink(16, ’S0219876216500146BIB047’, ’10.1016%252Fj.cma.2009.12.005’); genRefLink(128, ’S0219876216500146BIB047’, ’000276629400020’); · Zbl 1227.74084
[48] Ooi, E. T. and Yang, Z. J. [2011] ” Modelling dynamic crack propagation using the scaled boundary finite element method,” Int. J. Numer. Methods Eng.88(4), 329-349. genRefLink(16, ’S0219876216500146BIB048’, ’10.1002%252Fnme.3177’); genRefLink(128, ’S0219876216500146BIB048’, ’000295226600002’);
[49] Richardson, C. L., Hegemann, J., Sifakis, E., Hellrung, J. and Teran, J. M. [2011] ” An XFEM method for modeling geometrically elaborate crack propagation in brittle materials,” Int. J. Numer. Methods Eng.88(10), 1042-1065. genRefLink(16, ’S0219876216500146BIB049’, ’10.1002%252Fnme.3211’); genRefLink(128, ’S0219876216500146BIB049’, ’000297496700005’); · Zbl 1242.74156
[50] Shibanuma, K., Utsunomiya, T. and Aihara, S. [2014] ” An explicit application of partition of unity approach to XFEM approximation for precise reproduction of a priori knowledge of solution,” Int. J. Numer. Methods Eng.97(8), 551-581. genRefLink(16, ’S0219876216500146BIB050’, ’10.1002%252Fnme.4593’); genRefLink(128, ’S0219876216500146BIB050’, ’000329893700001’); · Zbl 1352.65550
[51] Song, G., Waisman, H., Lan, M. Y. and Harari, I. [2014] ” Extraction of stress intensity factors from Irwin’s integral using high-order XFEM on triangular meshes,” Int. J. Numer. Methods Eng.102(3-4), 528-550. genRefLink(16, ’S0219876216500146BIB051’, ’10.1002%252Fnme.4698’); genRefLink(128, ’S0219876216500146BIB051’, ’000352642900016’);
[52] Sukumar, N. and Prevost, J. H. [2003] ” Modeling quasi-static crack growth with the extended finite element method Part I: Computer implementation,” Int. J. Solids Struct.40(26), 7513-7537. genRefLink(16, ’S0219876216500146BIB052’, ’10.1016%252Fj.ijsolstr.2003.08.002’); genRefLink(128, ’S0219876216500146BIB052’, ’000186833700018’); · Zbl 1063.74102
[53] Tanaka, S., Okada, H., Okazawa, S. and Fujikubo, M. [2013] ” Fracture mechanics analysis using the wavelet Galerkin method and extended finite element method,” Int. J. Numer. Methods Eng.93(10), 1082-1108. genRefLink(16, ’S0219876216500146BIB053’, ’10.1002%252Fnme.4433’); genRefLink(128, ’S0219876216500146BIB053’, ’000315331600004’); · Zbl 1352.74027
[54] Tong, P., Pian, T. H. H. and Lasry, S. J. [1973] ” A hybrid: Element approach to crack problems in plane elasticity,” Int. J. Numer. Methods Eng.7(3), 297-308. genRefLink(16, ’S0219876216500146BIB054’, ’10.1002%252Fnme.1620070307’); · Zbl 0264.73113
[55] Vu-Bac, N., Nguyen-Xuan, H., Chen, L., Bordas, S., Kerfriden, P., Simpson, R. N. and Rabczuk, T. [2011] ” A node-based smoothed extended finite element method (NS-XFEM) for fracture analysis,” Comput. Model. Eng. Sci.73(4), 331-355. genRefLink(128, ’S0219876216500146BIB055’, ’000295151800001’); · Zbl 1231.74444
[56] Williams, M. L. [1957] ” On the stress distribution at the base of a stationary crack,” J. Appl. Mech.24, 109-114. · Zbl 0077.37902
[57] Wu, S. C., Zhang, W. H., Peng, X. and Miao, B. R. [2012] ” A twice-interpolation finite element method (TFEM) for crack propagation problems,” Int. J. Comput. Methods9(4), 1250055. [Abstract] genRefLink(128, ’S0219876216500146BIB057’, ’000313428600012’); · Zbl 1359.74448
[58] Xiao, Q. Z. and Karihaloo, B. L. [2006] ” Improving the accuracy of XFEM crack tip fields using higher order quadrature and statically admissible stress recovery,” Int. J. Numer. Methods Eng.66(9), 1378-1410. genRefLink(16, ’S0219876216500146BIB058’, ’10.1002%252Fnme.1601’); genRefLink(128, ’S0219876216500146BIB058’, ’000237985100002’); · Zbl 1122.74529
[59] Xiao, Q. Z. and Karihaloo, B. L. [2007a] ” Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM,” Comput. Methods Appl. Mech. Eng.196(13-16), 1864-1873. genRefLink(16, ’S0219876216500146BIB059’, ’10.1016%252Fj.cma.2006.09.022’); genRefLink(128, ’S0219876216500146BIB059’, ’000244471100002’); · Zbl 1173.74448
[60] Xiao, Q. Z. and Karihaloo, B. L. [2007b] ” An overview of a hybrid crack element and determination of its complete displacement field,” Eng. Fract. Mech.74(7), 1107-1117. genRefLink(16, ’S0219876216500146BIB060’, ’10.1016%252Fj.engfracmech.2006.12.022’); genRefLink(128, ’S0219876216500146BIB060’, ’000245129000010’);
[61] Xiao, Q. Z., Karihaloo, B. L. and Liu, X. Y. [2004] ” Direct determination of SIF and higher order terms of mixed mode cracks by a hybrid crack element,” Int. J. Fracture125(3-4), 207-225. genRefLink(16, ’S0219876216500146BIB061’, ’10.1023%252FB%253AFRAC.0000022229.54422.13’); genRefLink(128, ’S0219876216500146BIB061’, ’000221768000001’); · Zbl 1187.74246
[62] Yang, Z. J. and Ooi, E. T. [2012] ” Recent progress in modeling crack propagation using the scaled boundary finite element method,” Int. J. Comput. Methods9(1), 1240016. [Abstract] genRefLink(128, ’S0219876216500146BIB062’, ’000302997100016’); · Zbl 1359.74381
[63] Yau, J. F., Wang, S. S. and Corten, H. T. [1980] ” A mixed-mode crack analysis of isotropic solids using conservation laws of elasticity,” J. Appl. Mech.47(2), 335-341. genRefLink(16, ’S0219876216500146BIB063’, ’10.1115%252F1.3153665’); genRefLink(128, ’S0219876216500146BIB063’, ’A1980JX01600019’); · Zbl 0463.73103
[64] Zamani, A. and Eslami, M. R. [2011] ” Embedded interfaces by polytope FEM,” Int. J. Numer. Methods Eng.88(8), 715-748. genRefLink(16, ’S0219876216500146BIB064’, ’10.1002%252Fnme.3193’); genRefLink(128, ’S0219876216500146BIB064’, ’000297012500001’); · Zbl 1242.74176
[65] Zamani, A., Gracie, R. and Eslami, M. R. [2012] ” Cohesive and non-cohesive fracture by higher-order enrichment of XFEM,” Int. J. Numer. Methods Eng.90(4), 452-483. genRefLink(16, ’S0219876216500146BIB065’, ’10.1002%252Fnme.3329’); genRefLink(128, ’S0219876216500146BIB065’, ’000302153500004’); · Zbl 1242.74177
[66] Zhou, M. J., Cen, S., Bao, Y. and Li, C. F. [2014] ” A quasi-static crack propagation simulation based on shape-free hybrid stress-function finite elements with simple remeshing,” Comput. Methods Appl. Mech. Eng.275, 159-188. genRefLink(16, ’S0219876216500146BIB066’, ’10.1016%252Fj.cma.2014.03.006’); genRefLink(128, ’S0219876216500146BIB066’, ’000336346700009’); · Zbl 1296.74134
[67] Zi, G. and Belytschko, T. [2003] ” New crack-tip elements for XFEM and applications to cohesive cracks,” Int. J. Numer. Methods Eng.57(15), 2221-2240. genRefLink(16, ’S0219876216500146BIB067’, ’10.1002%252Fnme.849’); genRefLink(128, ’S0219876216500146BIB067’, ’000184631800006’);
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.