×

Dynamics of buoyancy-driven flows at moderately high Atwood numbers. (English) Zbl 1359.76117

Summary: Simultaneous density and velocity turbulence statistics for Rayleigh-Taylor-driven flows at a moderately high Atwood number (\(A_{t}\)) of \(0.73\pm 0.02\) are obtained using a new convective type or statistically steady gas tunnel facility. Air and air-helium mixture are used as working fluids to create a density difference in this facility, with a thin splitter plate separating the two streams flowing parallel to each other at the same velocity (\(U=3~\text{m}~\text{s}^{-1}\)). At the end of the splitter plate, the two miscible fluids are allowed to mix and the instability develops. Visualization and Mie-scattering techniques are used to obtain structure shape, volume fraction profile and mixing height growth information. Particle image velocimetry (PIV) and hot-wire techniques are used to measure planar and point-wise velocity statistics in the developing mixing layer. Asymmetry is evident in the flow field from the Mie-scattering images, with the spike side showing a more gradual decline in volume fraction than the bubble side. The spike side of the mixing layer grows 50 % faster than the bubble side. PIV is implemented for the first time in these moderately high-Atwood-number experiments (\(A_{t}>0.1\)) to obtain root-mean-square velocities, anisotropy tensor components and Reynolds stresses across the mixing layer. Overall, the turbulence statistics measured have shown different scaling compared to small-Atwood-number experiments. However, the total probability density functions for the velocities and turbulent mass fluxes exhibit behaviour similar to small-Atwood-number experiments. Conditional statistics reveal different values for turbulence statistics for spikes and bubbles, unlike small-Atwood-number experiments.

MSC:

76E30 Nonlinear effects in hydrodynamic stability
76F25 Turbulent transport, mixing
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Akula, B.2014 Experimental investigation of buoyancy driven mixing with and without shear at different Atwood numbers. PhD thesis, Texas A&M University.
[2] Akula, B.; Andrews, M. J.; Ranjan, D., Effect of shear on Rayleigh-Taylor mixing at small Atwood number, Phys. Rev. E, 87, (2013) · doi:10.1103/PhysRevE.87.033013
[3] Andrews, M. J.; Dalziel, S. B., Small Atwood number Rayleigh-Taylor experiments, Phil. Trans. R. Soc. A, 368, 1663-1679, (2010) · Zbl 1192.76004 · doi:10.1098/rsta.2010.0007
[4] Andrews, M. J.; Spalding, D. B., A simple experiment to investigate two-dimensional mixing by Rayleigh-Taylor instability, Phys. Fluids A, 2, 922-927, (1990) · doi:10.1063/1.857652
[5] Arons, J.; Lea, S. M., Accretion onto magnetized neutron stars – structure and interchange instability of a model magnetosphere, Astrophys. J., 207, 914-936, (1976) · doi:10.1086/154562
[6] Banerjee, A.; Andrews, M. J., Statistically steady measurements of Rayleigh-Taylor mixing in a gas channel, Phys. Fluids, 18, (2006) · doi:10.1063/1.2185687
[7] Banerjee, A.; Andrews, M. J., 3D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing, Int. J. Heat Mass Transfer, 52, 3906-3917, (2009) · Zbl 1167.76337 · doi:10.1016/j.ijheatmasstransfer.2009.03.032
[8] Banerjee, A.; Kraft, W. N.; Andrews, M. J., Detailed measurements of a statistically steady Rayleigh-Taylor mixing layer from small to high Atwood numbers, J. Fluid Mech., 659, 127-190, (2010) · Zbl 1205.76006 · doi:10.1017/S0022112010002351
[9] Bell, J. H. & Mehta, R. D.1989 Design and calibration of the mixing layer and wind tunnel NASA Rep. JIAA TR-89.
[10] Bell, J. H.; Mehta, R. D., Development of two-stream mixing layer from tripped and untripped boundary layers, AIAA J., 28, 2034-2042, (1990) · doi:10.2514/3.10519
[11] Birkhoff, G.; Carter, D., Rising plane bubbles, J. Rat. Mech. Anal., 6, 769-779, (1957) · Zbl 0080.18403
[12] Bruun, H. H., Hot-Wire Anemometry: Principles and Signal Analysis, (1995), Oxford University Press
[13] Budil, K. S., Remington, B. A., Weber, S. V., Perry, T. S. & Peyser, T. A.1997 Nonlinear Rayleigh-Taylor instability experiments in nova. Lawrence Livermore National Lab. Report, UCRL-JC-127732.
[14] Burrows, A., Supernova explosions in the universe, Nature, 403, 727-733, (2000) · doi:10.1038/35001501
[15] Burton, G. C., Study of ultrahigh Atwood-number Rayleigh-Taylor mixing dynamics using the nonlinear large-eddy simulation method, Phys. Fluids, 23, 4, (2011)
[16] Cabot, W. H.; Cook, A. W., Reynolds number effects on Rayleigh-Taylor instability with possible implications for type Ia supernovae, Nat. Phys., 2, 562-568, (2006) · doi:10.1038/nphys361
[17] Carter, B. A.; Retterer, J. M.; Yizengaw, E.; Wiens, K.; Wing, S.; Groves, K.; Caton, R.; Bridgwood, C.; Francis, M.; Terkildsen, M., Using solar wind data to predict daily GPS scintillation occurrence in the African and Asian low-latitude regions, Geophys. Res. Lett., 41, 8176-8184, (2014) · doi:10.1002/2014GL062203
[18] Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, (1961), Oxford University Press · Zbl 0142.44103
[19] Cole, R. L.; Tankin, R. S., Experimental study of Taylor instability, Phys. Fluids, 16, 1810-1815, (1973) · doi:10.1063/1.1694217
[20] Cook, A. W.; Dimotakis, P. E., Transition stages of Rayleigh-Taylor instability between miscible fluids, J. Fluid Mech., 443, 69-99, (2001) · Zbl 1015.76037 · doi:10.1017/S0022112001005377
[21] Daly, B. J., Numerical study of two fluid Rayleigh-Taylor instability, Phys. Fluids, 10, 297-307, (1967) · Zbl 0147.45806 · doi:10.1063/1.1762109
[22] Dalziel, S. B., Rayleigh-Taylor instability: experiments with image analysis, Dyn. Atmos. Oceans, 20, 127-153, (1993) · doi:10.1016/0377-0265(93)90051-8
[23] Dalziel, S. B.; Linden, P. F.; Youngs, D. L., Self-similarity and internal structure of turbulence induced by Rayleigh-Taylor instability, J. Fluid Mech., 399, 1-48, (1999) · Zbl 0942.76513 · doi:10.1017/S002211209900614X
[24] Danckwerts, P. V., The definition and measurement of some characteristics of mixtures, Appl. Sci. Res., 3, 279-296, (1952)
[25] Davies, R. M.; Taylor, G., The mechanics of large bubbles rising through extended liquids and through liquids in tubes, Proc. R. Soc. Lond. A, 200, 375-390, (1950) · doi:10.1098/rspa.1950.0023
[26] Dimonte, G.; Ramaprabhu, P. K.; Youngs, D. L.; Andrews, M. J.; Rosner, R., Recent advances in the turbulent Rayleigh-Taylor instability, Phys. Plasmas, 12, (2005) · doi:10.1063/1.1871952
[27] Dimonte, G.; Schneider, M., Turbulent Rayleigh-Taylor instability experiments with variable acceleration, Phys. Rev. E, 54, (1996) · doi:10.1103/PhysRevE.54.3740
[28] Dimonte, G.; Schneider, M., Density ratio dependence of Rayleigh-Taylor mixing for sustained and impulsive acceleration histories, Phys. Fluids, 12, 304-321, (2000) · Zbl 1149.76361 · doi:10.1063/1.870309
[29] Dimonte, G.; Youngs, D. L.; Dimits, A.; Weber, S.; Marinak, M.; Wunsch, S.; Garasi, C.; Robinson, A.; Andrews, M. J.; Ramaprabhu, P. K., A comparative study of the turbulent Rayleigh-Taylor instability using high-resolution three-dimensional numerical simulations: the Alpha-Group Collaboration, Phys. Fluids, 16, 1668, (2004) · Zbl 1186.76143 · doi:10.1063/1.1688328
[30] Drazin, P. G.; Reid, W. H., Hydrodynamic Stability, (2004), Cambridge University Press · Zbl 1055.76001 · doi:10.1017/CBO9780511616938
[31] Emmons, H. W.; Chang, C. T.; Watson, B. C., Taylor instability of finite surface waves, J. Fluid Mech., 7, 177-193, (1960) · Zbl 0089.19501 · doi:10.1017/S0022112060001420
[32] Fermi, E. & Neumann, J. V.1955 Taylor instability of incompressible liquids. United States Atomic Energy Commission: Unclassified, AECU-2979.
[33] Girimaji, S. S., Pressure – strain correlation modelling of complex turbulent flows, J. Fluid Mech., 422, 91-123, (2000) · Zbl 1003.76037 · doi:10.1017/S0022112000001336
[34] Goncharov, V. N., Analytical model of nonlinear, single-mode, classical Rayleigh-Taylor instability at arbitrary Atwood numbers, Phys. Rev. Lett., 88, (2002) · doi:10.1103/PhysRevLett.88.134502
[35] Groth, J.; Johansson, A. V., Turbulence reduction by screens, J. Fluid Mech., 197, 139-155, (1988) · doi:10.1017/S0022112088003209
[36] Haan, S. W., Onset of nonlinear saturation for Rayleigh-Taylor growth in the presence of a full spectrum of modes, Phys. Rev. A, 39, (1989) · doi:10.1103/PhysRevA.39.5812
[37] Hachisu, I.; Matsuda, T.; Nomoto, K.; Shigeyama, T., Rayleigh-Taylor instabilities and mixing in the helium star models for type Ib/Ic supernovae, Astrophys. J., 368, L27-L30, (1991) · doi:10.1086/185940
[38] Huang, Z.; De Luca, A.; Atherton, T. J.; Bird, M.; Rosenblatt, C.; Carls, P., Rayleigh-Taylor instability experiments with precise and arbitrary control of the initial interface shape, Phys. Rev. Lett., 99, (2007)
[39] Koop, C. G., Instability and turbulence in a stratified shear layer, NASA STI/Recon Tech. Rep. N, 77, (1976)
[40] Kraft, W. N.2008 Simultaneous and instantaneous measurement of velocity and density in Rayleigh-Taylor mixing layers. PhD thesis, Texas A&M University.
[41] Kraft, W. N.; Banerjee, A.; Andrews, M. J., On hot-wire diagnostics in Rayleigh-Taylor mixing layers, Exp. Fluids, 47, 49-68, (2009) · doi:10.1007/s00348-009-0636-3
[42] Kucherenko, Y. A.; Balabin, S. I.; Ardashova, R. I.; Kozelkov, O. E.; Dulov, A. V.; Romanov, I. A., Experimental study of the influence of the stabilizing properties of transitional layers on the turbulent mixing evolution, Laser Part. Beams, 21, 369-373, (2003)
[43] Kuchibhatla, S. & Ranjan, D.2012Rayleigh-Taylor experiments. In ASME 2012 International Mechanical Engineering Congress and Exposition, pp. 1341-1351. American Society of Mechanical Engineers.
[44] Kuchibhatla, S.; Ranjan, D., Effect of initial conditions on Rayleigh-Taylor mixing: modal interaction, Phys. Scr., 155, (2013)
[45] Laws, E. M.; Livesey, J. L., Flow through screens, Annu. Rev. Fluid Mech., 10, 247-266, (1978) · Zbl 0415.76001 · doi:10.1146/annurev.fl.10.010178.001335
[46] Layzer, D., On the instability of superposed fluids in a gravitational field, Astrophys. J., 122, 1, 1-12, (1955) · doi:10.1086/146048
[47] Lewis, D. J., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. II, Proc. R. Soc. Lond. A, 202, 81-96, (1950) · doi:10.1098/rspa.1950.0086
[48] Livescu, D.; Ristorcelli, J. R.; Gore, R. A.; Dean, S. H.; Cabot, W. H.; Cook, A. W., High-Reynolds number Rayleigh-Taylor turbulence, J. Turbul., 10, 13, 1-32, (2009) · Zbl 1273.76142 · doi:10.1080/14685240902870448
[49] Livescu, D.; Wei, T.; Petersen, M. R., Direct numerical simulations of Rayleigh-Taylor instability, J. Phys.: Conf. Ser., 318, (2011)
[50] Loehrke, R. I. & Nagib, H. M.1972 Experiments on management of free-stream turbulence. AGARD Report No. 598.
[51] Loehrke, R. I.; Nagib, H. M., Control of free-stream turbulence by means of honeycombs: a balance between suppression and generation, J. Fluids Engng, 98, 342-351, (1976) · doi:10.1115/1.3448313
[52] Mcfarland, J. A.; Greenough, J. A.; Ranjan, D., Computational parametric study of a Richtmyer-Meshkov instability for an inclined interface, Phys. Rev. E, 84, (2011) · doi:10.1103/PhysRevE.84.026303
[53] Mcfarland, J. A.; Reilly, D.; Creel, S.; Mcdonald, C.; Finn, T.; Ranjan, D., Experimental investigation of the inclined interface Richtmyer-Meshkov instability before and after reshock, Exp. Fluids, 55, 1, 1-14, (2014) · doi:10.1007/s00348-013-1640-1
[54] Mueschke, N. J.2008 Experimental and numerical study of molecular mixing dynamics in Rayleigh-Taylor unstable flows. PhD thesis, Texas A&M University.
[55] Mueschke, N. J.; Andrews, M. J.; Schilling, O., Experimental characterization of initial conditions and spatio-temporal evolution of a small-Atwood-number Rayleigh-Taylor mixing layer, J. Fluid Mech., 567, 27-63, (2006) · Zbl 1104.76015 · doi:10.1017/S0022112006001959
[56] Mueschke, N. J.; Schilling, O., Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. I. Comparison to experimental data, Phys. Fluids, 21, (2009) · Zbl 1183.76366
[57] Mueschke, N. J.; Schilling, O., Investigation of Rayleigh-Taylor turbulence and mixing using direct numerical simulation with experimentally measured initial conditions. II. Dynamics of transitional flow and mixing statistics, Phys. Fluids, 21, (2009) · Zbl 1183.76367
[58] Mueschke, N. J.; Schilling, O.; Youngs, D. L.; Andrews, M. J., Measurements of molecular mixing in a high-Schmidt-number Rayleigh-Taylor mixing layer, J. Fluid Mech., 632, 17-48, (2009) · Zbl 1183.76038 · doi:10.1017/S0022112009006132
[59] Olson, D. H.; Jacobs, J. W., Experimental study of Rayleigh-Taylor instability with a complex initial perturbation, Phys. Fluids, 21, (2009) · Zbl 1183.76392
[60] Papoulis, A.; Pillai, S. U., Probability, Random Variables and Stochastic Processes, (2002), McGraw-Hill
[61] Pope, S. B., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[62] Ramaprabhu, P.; Dimonte, G.; Woodward, P.; Fryer, C.; Rockefeller, G.; Muthuraman, K.; Lin, P.-H.; Jayaraj, J., The late-time dynamics of the single-mode Rayleigh-Taylor instability, Phys. Fluids, 24, 7, (2012) · doi:10.1063/1.4733396
[63] Ramaprabhu, P. K.2003 On the dynamics of Rayleigh-Taylor mixing. PhD thesis, Texas A&M University.
[64] Ramaprabhu, P. K.; Andrews, M. J., Simultaneous measurements of velocity and density in buoyancy-driven mixing, Exp. Fluids, 34, 98-106, (2003) · doi:10.1007/s00348-002-0538-0
[65] Ramaprabhu, P. K.; Andrews, M. J., Experimental investigation of Rayleigh-Taylor mixing at small Atwood numbers, J. Fluid Mech., 502, 233-271, (2004) · Zbl 1067.76518 · doi:10.1017/S0022112003007419
[66] Ramaprabhu, P. K.; Andrews, M. J., On the initialization of Rayleigh-Taylor simulations, Phys. Fluids, 16, 8, L59-L62, (2004) · Zbl 1186.76439 · doi:10.1063/1.1765171
[67] Ramaprabhu, P. K.; Dimonte, G.; Andrews, M. J., A numerical study of the influence of initial perturbations on the turbulent Rayleigh-Taylor instability, J. Fluid Mech., 536, 285-319, (2005) · Zbl 1122.76035 · doi:10.1017/S002211200500488X
[68] Ratafia, M., Experimental investigation of Rayleigh-Taylor instability, Phys. Fluids, 16, 1207-1210, (1973) · doi:10.1063/1.1694499
[69] Rayleigh, Lord, Investigation of the character of the equilibrium of an incompressible heavy fluid of variable density, Lond. Math. Soc., 14, 170-177, (1883) · JFM 15.0848.02
[70] Read, K. I., Experimental investigation of turbulent mixing by Rayleigh-Taylor instability, Physica D, 12, 45-58, (1984) · doi:10.1016/0167-2789(84)90513-X
[71] Remington, B. A.; Weber, S. V.; Marinak, M. M.; Haan, S. W.; Kilkenny, J. D.; Wallace, R.; Dimonte, G., Multimode Rayleigh-Taylor experiments on nova, Phys. Rev. Lett., 73, 545-548, (1994) · doi:10.1103/PhysRevLett.73.545
[72] Ristorcelli, J. R.; Clark, T. T., Rayleigh-Taylor turbulence: self-similar analysis and direct numerical simulations, J. Fluid Mech., 507, 213-253, (2004) · Zbl 1134.76364 · doi:10.1017/S0022112004008286
[73] Sazonov, S. V., Dissipative structures in the f-region of the equatorial ionosphere generated by Rayleigh-Taylor instability, Planet. Space Sci., 39, 1667-1671, (1991) · doi:10.1016/0032-0633(91)90027-8
[74] Schubauer, G. B., Spangenberg, W. G. & Klebanoff, P. S.1950 Aeodynamic characteristics of damping screens. NACA TN 2001.
[75] Sharp, D. H., An overview of Rayleigh-Taylor instability, Physica D, 12, 3-18, (1984) · Zbl 0577.76047 · doi:10.1016/0167-2789(84)90510-4
[76] Snider, D. M.1994 A study of compound buoyancy and shear mixing. PhD thesis, Texas A&M University.
[77] Snider, D. M.; Andrews, M. J., Rayleigh-Taylor and shear driven mixing with an unstable thermal stratification, Phys. Fluids, 6, (1994) · doi:10.1063/1.868065
[78] Tan-Atichat, J.; Nagib, H. M.; Loehrke, R. I., Interaction of free-stream turbulence with screens and grids: a balance between turbulence scales, J. Fluid Mech., 114, 501-528, (1982) · doi:10.1017/S0022112082000275
[79] Taylor, G. I., The spectrum of turbulence, Proc. R. Soc. Lond. A, 164, 476-490, (1938) · JFM 64.1454.02 · doi:10.1098/rspa.1938.0032
[80] Taylor, G. I., The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. I, Proc. R. Soc. Lond. A, 201, 192-196, (1950) · Zbl 0038.12201 · doi:10.1098/rspa.1950.0052
[81] Tsiklashvili, V.; Colio, Pe. R.; Likhachev, O. A.; Jacobs, J. W., An experimental study of small Atwood number Rayleigh-Taylor instability using the magnetic levitation of paramagnetic fluids, Phys. Fluids, 24, (2012) · doi:10.1063/1.4721898
[82] Waddell, J. T.; Niederhaus, C. E.; Jacobs, J. W., Experimental study of Rayleigh-Taylor instability: low Atwood number liquid systems with single-mode initial perturbations, Phys. Fluids, 13, 1263-1273, (2001) · Zbl 1184.76579 · doi:10.1063/1.1359762
[83] White, J.; Oakley, J.; Anderson, M.; Bonazza, R., Experimental measurements of the nonlinear Rayleigh-Taylor instability using a magnetorheological fluid, Phys. Rev. E, 81, (2010) · doi:10.1103/PhysRevE.81.026303
[84] Wilcock, W. S. D.; Whitehead, J. A., The Rayleigh-Taylor instability of an embedded layer of low-viscosity fluid, J. Geophys. Res., 96, 12193-12200, (1991) · doi:10.1029/91JB00339
[85] Wilke, C. R., A viscosity equation for gas mixtures, J. Chem. Phys., 18, 517-519, (1950) · doi:10.1063/1.1747673
[86] Wilson, P. N.2002 A study of buoyancy and shear driven turbulence within a closed water channel. PhD thesis, Texas A&M University.
[87] Wilson, P. N.; Andrews, M. J., Spectral measurements of Rayleigh-Taylor mixing at small Atwood number, Phys. Fluids, 14, 938-945, (2002) · doi:10.1063/1.1445418
[88] Wilson, P. N.; Andrews, M. J.; Harlow, F., Spectral nonequilibrium in a turbulent mixing layer, Phys. Fluids, 11, 2425-2433, (1999) · Zbl 1147.76535 · doi:10.1063/1.870103
[89] Youngs, D. L., Numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Physica D, 12, 32-44, (1984) · doi:10.1016/0167-2789(84)90512-8
[90] Youngs, D. L., Three dimensional numerical simulation of turbulent mixing by Rayleigh-Taylor instability, Phys. Fluids A, 3, (1991) · doi:10.1063/1.858059
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.