×

Crow instability: nonlinear response to the linear optimal perturbation. (English) Zbl 1359.76097

Summary: The potential for anticipated destruction of a counter-rotating vortex pair using the linear optimal perturbation of the Crow instability is assessed. Direct numerical simulation is used to study the development of the Crow instability and the subsequent evolution of the flow up to 30 characteristic times at a circulation-based Reynolds number of 1000. The conventional development of the instability leads to multiple contortions of the vortices including the linear growth of sinusoidal deformation, vortex linking and the formation of vortex rings. A new evolution stage is identified, succeeding this well-established sequence: the vortex rings undergo periodic oscillation. Two complete periods are simulated during which the vortical system is hardly altered, thereby demonstrating the extraordinary resilience of the vortices. The possibility of preventing these dynamics using the linear optimal perturbation of the Crow instability, the adjoint mode, is analysed. By appropriately setting the forcing amplitude, the lifetime of the vortices until their loss of coherence is reduced to approximately 13 characteristic times, which is less than half that of the natural Crow behaviour observed with infinitesimal forcing. The dynamics of the flow induced by the linear optimal perturbation that enable this result are connected to processes already known to efficiently alter vortical flows, in particular transient growth and four-vortex dynamics.

MSC:

76D17 Viscous vortex flows
76G25 General aerodynamics and subsonic flows
76E99 Hydrodynamic stability

Software:

Nek5000
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Antkowiak, A.; Brancher, P., Transient energy growth for the Lamb-Oseen vortex, Phys. Fluids, 16, 1, L1-L4, (2004) · Zbl 1186.76028 · doi:10.1063/1.1626123
[2] Arms, R. J.; Hama, F. R., Localized-induction concept on a curved vortex and motion of an elliptic vortex ring, Phys. Fluids, 8, 4, 553-559, (1965) · doi:10.1063/1.1761268
[3] Brion, V.; Sipp, D.; Jacquin, L., Optimal amplification of the Crow instability, Phys. Fluids, 19, 11, (2007) · Zbl 1182.76088 · doi:10.1063/1.2793146
[4] Crow, S. C., Stability theory for a pair of trailing vortices, AIAA J., 8, 12, 2172-2179, (1970) · doi:10.2514/3.6083
[5] Dhanak, M. R.; De Bernardinis, B., The evolution of an elliptic vortex ring, J. Fluid Mech., 109, 189-216, (1981) · Zbl 0471.76026 · doi:10.1017/S0022112081001006
[6] Fabre, D.; Jacquin, L.; Loof, A., Optimal perturbations in a four-vortex aircraft wake in counter-rotating configuration, J. Fluid Mech., 451, 319-328, (2002) · Zbl 1037.76018 · doi:10.1017/S0022112001006954
[7] Farrell, B. F., Optimal excitation of perturbations in viscous shear flow, Phys. Fluids, 31, 8, 2093, (1988) · doi:10.1063/1.866609
[8] Fischer, P. F., Lottes, J. W. & Kerkemeier, S. G.2008 nek5000 Web page http://nek5000.mcs.anl.gov.
[9] Fontane, J.; Brancher, P.; Fabre, D., Stochastic forcing of the Lamb-Oseen vortex, J. Fluid Mech., 613, 233-254, (2008) · Zbl 1151.76435 · doi:10.1017/S002211200800308X
[10] Hussain, F.; Duraisamy, K., Mechanics of viscous vortex reconnection, Phys. Fluids, 23, 2, (2011)
[11] Hussain, F.; Pradeep, D. S.; Stout, E., Nonlinear transient growth in a vortex column, J. Fluid Mech., 682, 304-331, (2011) · Zbl 1241.76232 · doi:10.1017/jfm.2011.226
[12] Leweke, T.; Williamson, C. H. K., Experiments on long-wavelength instability and reconnection of a vortex pair, Phys. Fluids, 23, 2, (2011) · doi:10.1063/1.3531720
[13] Marshall, J. S.; Beninati, M. L., External turbulence interaction with a columnar vortex, J. Fluid Mech., 540, 221, (2005) · Zbl 1082.76067 · doi:10.1017/S002211200500580X
[14] Marshall, J. S.; Brancher, P.; Giovannini, A., Interaction of unequal anti-parallel vortex tubes, J. Fluid Mech., 446, 229-252, (2001) · Zbl 1014.76015
[15] Melander, M.; Hussain, F., Coupling between a coherent structure and fine-scale turbulence, Phys. Rev. E, 48, 4, 2669, (1993) · doi:10.1103/PhysRevE.48.2669
[16] Melander, M. V.; Hussain, F., Cross-linking of two antiparallel vortex tubes, Phys. Fluids, 1, 4, 633-636, (1989) · doi:10.1063/1.857437
[17] Misaka, T.; Holzpfel, F.; Henningson, I.; Gerz, T.; Manhart, M.; Schwertfirm, F., Vortex bursting and tracer transport of a counter-rotating vortex pair, Phys. Fluids, 24, 2, (2012) · doi:10.1063/1.3684990
[18] Miyazaki, T.; Hunt, J. C. R., Linear and nonlinear interactions between a columnar vortex and external turbulence, J. Fluid Mech., 402, 349-378, (2000) · Zbl 0983.76044 · doi:10.1017/S0022112099006990
[19] Moriconi, L., Vortex reconnection as the dissipative scattering of dipoles, Phys. Rev. E, 61, 3, 2640, (2000) · doi:10.1103/PhysRevE.61.2640
[20] Pope, S. B., Turbulent Flows, (2000), Cambridge University Press · Zbl 0966.76002 · doi:10.1017/CBO9780511840531
[21] Pradeep, D. S.; Hussain, F., Transient growth of perturbations in a vortex column, J. Fluid Mech., 550, 251-288, (2006) · Zbl 1222.76053 · doi:10.1017/S0022112005008207
[22] Saffman, P. G., A model of vortex reconnection, J. Fluid Mech., 212, 395-402, (1990) · Zbl 0692.76016 · doi:10.1017/S0022112090002026
[23] Schmid, P. J.; Henningson, D. S., Stability and Transition in Shear Flows, (2001), Springer · Zbl 0966.76003 · doi:10.1007/978-1-4613-0185-1
[24] Shaeffer, N.; Le Dizès, S., Nonlinear dynamics of the elliptic instability, J. Fluid Mech., 646, 471-480, (2010) · Zbl 1189.76247 · doi:10.1017/S002211200999351X
[25] Sipp, D.1999 Instabilités dans les écoulements tourbillonnaires. PhD thesis, Ecole Polytechnique, France.
[26] Spalart, P. R., Airplane trailing vortices, Annu. Rev. Fluid Mech., 30, 1, 107-138, (1998) · Zbl 1398.76087 · doi:10.1146/annurev.fluid.30.1.107
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.