×

A finite strain fibre-reinforced viscoelasto-viscoplastic model of plant cell wall growth. (English) Zbl 1360.74114

Summary: A finite strain fibre-reinforced viscoelasto-viscoplastic model implemented in a finite element (FE) analysis is presented to study the expansive growth of plant cell walls. Three components of the deformation of growing cell wall, i.e. elasticity, viscoelasticity and viscoplasticity-like growth, are modelled within a consistent framework aiming to present an integrative growth model. The two aspects of growth – turgor-driven creep and new material deposition – and the interplay between them are considered by presenting a yield function, flow rule and hardening law. A fibre-reinforcement formulation is used to account for the role of cellulose microfibrils in the anisotropic growth. Mechanisms in in vivo growth are taken into account to represent the corresponding biology-controlled behaviour of a cell wall. A viscoelastic formulation is proposed to capture the viscoelastic response in the cell wall. The proposed constitutive model provides a unique framework for modelling both the in vivo growth of cell wall dominated by viscoplasticity-like behaviour and in vitro deformation dominated by elastic or viscoelastic responses. A numerical scheme is devised, and FE case studies are reported and compared with experimental data.

MSC:

74L15 Biomechanical solid mechanics
92C10 Biomechanics
PDFBibTeX XMLCite
Full Text: DOI Link

References:

[1] Refregier G, Pelletier S, Jaillard D, Hofte H (2004) Interaction between wall deposition and cell elongation in dark-grown hypocotyl cells in Arabidopsis. Plant Physiol 135:959-968 · doi:10.1104/pp.104.038711
[2] Cosgrove DJ (2001) Wall structure and wall loosening. A look backwards and forwards. Plant Physiol 125:131-134 · doi:10.1104/pp.125.1.131
[3] McCann MC, Wells B, Roberts K (1990) Direct visualization of cross-links in the primary plant cell wall. J Cell Sci 96:323-334
[4] Iwamoto S, Kai W, Isogai A, Iwata T (2009) Elastic modulus of single cellulose microfibrils from tunicate measured by atomic force microscopy. Biomacromolecules 10:2571-2576 · doi:10.1021/bm900520n
[5] Marga F, Grandbois M, Cosgrove DJ, Baskin TI (2005) Cell wall extension results in the coordinate separation of parallel microfibrils: evidence from scanning electron microscopy and atomic force microscopy. Plant J 43:181-190 · doi:10.1111/j.1365-313X.2005.02447.x
[6] Suslov D, Verbelen J-P (2006) Cellulose orientation determines mechanical anisotropy in onion epidermis cell walls. J Exp Bot 57:2183-2192 · doi:10.1093/jxb/erj177
[7] Dumais J, Shaw SL, Steele CR, Long SR, Ray PM (2006) An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int J Dev Biol 50:209-222 · doi:10.1387/ijdb.052066jd
[8] Cosgrove DJ (1993) Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol 124:1-23 · doi:10.1111/j.1469-8137.1993.tb03795.x
[9] Schopfer P (2006) Biomechanics of plant growth. Am J Bot 93:1415-1425 · doi:10.3732/ajb.93.10.1415
[10] Cosgrove DJ (1998) Cell wall loosening by expansins. Plant Physiol 118:333-339 · doi:10.1104/pp.118.2.333
[11] Cosgrove DJ (2000) Loosening of plant cell walls by expansins. Nature 407:321-326 · doi:10.1038/35030000
[12] Cosgrove DJ (2005) Growth of the plant cell wall. Nat Rev Mol Cell Biol 6(11):850-861 · doi:10.1038/nrm1746
[13] Choi D, Cho H, Lee Y (2006) Expansins: expanding importance in plant growth and development. Physiol Plant 126:511-518
[14] Taiz L (1984) Plant cell expansion: regulation of cell wall mechanical properties. Annu Rev Plant Physiol 35:585-657 · doi:10.1146/annurev.pp.35.060184.003101
[15] Kutschera U (1990) Cell-wall synthesis and elongation growth in hypocotyls of Helianthus annuus. Planta 181:316-323 · doi:10.1007/BF00195882
[16] Proseus TE, Boyer JS (2006) Identifying cytoplasmic input to the cell wall of growing Chara corallina. J Exp Bot 57:3231-3242 · doi:10.1093/jxb/erl087
[17] Rojas ER, Hotton S, Dumais J (2011) Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys J 101:1844-1853 · doi:10.1016/j.bpj.2011.08.016
[18] Fung YC (1993) Biomechanics: mechanical properties of living tissues. Springer, New York · doi:10.1007/978-1-4757-2257-4
[19] Hohl M, Schopfer P (1992) Physical extensibility of maize coleoptile cell walls: apparent plastic extensibility is due to elastic hysteresis. Planta 187:498-504
[20] Keckes J, Burgert I, Frühmann K, Müller M, Kölln K, Hamilton M, Burghammer M, Roth SV, Stanzl-Tschegg SE, Fratzl P (2003) Cell-wall recovery after irreversible deformation of wood. Nat Mater 2:810-814 · doi:10.1038/nmat1019
[21] Lockhart JA (1965) An analysis of irreversible plant cell elongation. J Theor Biol 8:264-275 · doi:10.1016/0022-5193(65)90077-9
[22] Lockhart, JA; Bonner, J. (ed.); Varner, JE (ed.), Cell extension, 827-849 (1965), New York
[23] Verbelen, J-P; Vissenberg, K.; Verbelen, J-P (ed.); Vissenberg, K. (ed.), Cell expansion: past, present and perspectives, 1-6 (2007), Berlin · doi:10.1007/7089_2006_068
[24] Green PB, Erickson RO, Buggy J (1971) Metabolic and physical control of cell elongation rate. In vivo studies in Nitella. Plant Physiol 47:423-430 · doi:10.1104/pp.47.3.423
[25] Ray PM, Green PB, Cleland R (1972) Role of turgor in plant cell growth. Nature 239:163-164 · doi:10.1038/239163a0
[26] Ortega JKE (1990) Governing equations for plant cell growth. Physiol Plant 79:116-121 · doi:10.1111/j.1399-3054.1990.tb05873.x
[27] Cosgrove DJ (1986) Biophysical control of plant cell growth. Annu Rev Plant Physiol 37:377-405 · doi:10.1146/annurev.pp.37.060186.002113
[28] Geitmann A, Ortega JKE (2009) Mechanics and modelling of plant cell growth. Trends Plant Sci 14:467-478 · doi:10.1016/j.tplants.2009.07.006
[29] Pietruszka M (2009) General proof of the validity of a new tensor equation of plant growth. J Theor Biol 256:584-585 · Zbl 1400.92336 · doi:10.1016/j.jtbi.2008.11.001
[30] Veytsman BA, Cosgrove DJ (1998) A model of cell wall expansion based on thermodynamics of polymer networks. Biophys J 75:2240-2250 · doi:10.1016/S0006-3495(98)77668-4
[31] Boudaoud A (2003) Growth of walled cells: from shells to vesicles. Phys Rev Lett 91:018104 · doi:10.1103/PhysRevLett.91.018104
[32] Bruce DM (2003) Mathematical modelling of the cellular mechanics of plants. Philos Trans R Soc Lond B 358:1437-1444 · doi:10.1098/rstb.2003.1337
[33] Kerstens S, Decraemer WF, Verbelen J-P (2001) Cell walls at the plant surface behave mechanically like fiber-reinforced composite materials. Plant Physiol 127:381-385 · doi:10.1104/pp.010423
[34] Hettiaratchi DRP, O’Callaghan JR (1978) Structural mechanics of plant cells. J Theor Biol 74:235-257 · doi:10.1016/0022-5193(78)90074-7
[35] Chaplain MAJ (1993) The strain energy function of an ideal plant cell wall. J Theor Biol 163:77-97 · doi:10.1006/jtbi.1993.1108
[36] Dyson RJ, Jensen OE (2010) A fibre-reinforced fluid model of anisotropic plant cell growth. J Fluid Mech 655:472-503 · Zbl 1197.76165 · doi:10.1017/S002211201000100X
[37] Dyson RJ, Band LR, Jensen OE (2012) A model of crosslink kinetics in the expanding plant cell wall: yield stress and enzyme action. J Theor Biol 307:125-136 · Zbl 1337.92088 · doi:10.1016/j.jtbi.2012.04.035
[38] Geitmann A (2010) Mechanical modeling and structural analysis of the primary plant cell wall. Curr Opin Plant Biol 13:693-699 · doi:10.1016/j.pbi.2010.09.017
[39] Geitmann, A.; Wojtaszek, P. (ed.), Generating a cellular protuberance: mechanics of tip growth, 117-132 (2011), Berlin · doi:10.1007/978-3-642-19091-9_5
[40] Kha H, Tuble SC, Kalyanasundaram S, Williamson RE (2010) WallGen, software to construct layered cellulose-hemicellulose networks and predict their small deformation mechanics. Plant Physiol 152:774-786 · doi:10.1104/pp.109.146936
[41] Goriely A, Tabor M (2003) Biomechanical models of hyphal growth in actinomycetes. J Theor Biol 222:211-218 · Zbl 1464.92026 · doi:10.1016/S0022-5193(03)00029-8
[42] Bernal R, Rojas ER, Dumais J (2007) The mechanics of tip growth morphogenesis: what we have learned from rubber balloons. J Mech Mater Struct 2:1157-1168 · doi:10.2140/jomms.2007.2.1157
[43] Hamant O, Heisler MG, Jönsson H, Krupinski P, Uyttewaal M, Bokov P, Corson F, Sahlin P, Boudaoud A, Meyerowitz EM, Couder Y, Traas J (2008) Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650-1655 · doi:10.1126/science.1165594
[44] Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A, Bayer E, Schorderet M, Reinhardt D, Kuhlemeier C, Smith RS (2012) Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:1096-1099 · doi:10.1126/science.1213100
[45] Baskin TI (2005) Anisotropic expansion of the plant cell wall. Annu Rev Cell Dev Biol 21:203-222 · doi:10.1146/annurev.cellbio.20.082503.103053
[46] Epstein M, Maugin GA (2000) Thermomechanics of volumetric growth in uniform bodies. Int J Plast 16:951-978 · Zbl 0979.74006 · doi:10.1016/S0749-6419(99)00081-9
[47] Kuhl E, Steinmann P (2003) Mass- and volume-specific views on thermodynamics for open systems. Proc R Soc Lond A 459:2547-2568 · Zbl 1092.80500 · doi:10.1098/rspa.2003.1119
[48] Guillou, A.; Ogden, RW; Holzapfel, GA (ed.); Ogden, RW (ed.), Growth in soft biological tissue and residual stress development, 47-62 (2006), Berlin · doi:10.1007/3-540-31184-X_4
[49] Garikipati K, Arruda EM, Grosh K, Narayanan H, Calve S (2004) A continuum treatment of growth in biological tissue the coupling of mass transport and mechanics. J Mech Phys Solids 52:1595-1625 · Zbl 1159.74381 · doi:10.1016/j.jmps.2004.01.004
[50] Humphrey JD, Rajagopal KR (2002) A constrained mixture model for growth and remodeling of soft tissues. Math Models Methods Appl Sci 12:407-430 · Zbl 1021.74026 · doi:10.1142/S0218202502001714
[51] Huang R, Becker AA, Jones IA (2012) Modelling cell wall growth using a fibre-reinforced hyperelastic-viscoplastic constitutive law. J Mech Phys Solids 60:750-783 · Zbl 1244.74087 · doi:10.1016/j.jmps.2011.12.003
[52] Simo JC, Hughes TJR (1998) Computational inelasticity. Springer, New York · Zbl 0934.74003
[53] Moran B, Ortiz M, Shih CF (1990) Formulation of implicit finite element methods for multiplicative finite deformation plasticity. Int J Numer Methods Eng 29:483-514 · Zbl 0724.73221 · doi:10.1002/nme.1620290304
[54] Belytschko T, Liu WK, Moran B (2001) Nonlinear finite elements for continua and structures. Wiley, Chichester
[55] Marsden JE, Hughes TJR (1994) Mathematical foundation of elasticity. Dover, NewYork
[56] Gasser TC, Ogden RW, Holzapfel GA (2006) Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J R Soc Interface 3:15-35 · doi:10.1098/rsif.2005.0073
[57] Skalak R (1981) Growth as a finite displacement field. In: Carlson DE, Shield RT (eds) Proceedings off the IUTAM symposium on finite elasticity. Martinus Nijhoff Publishers, The Hague, pp 347-355 · Zbl 0543.73128
[58] Chuong, CJ; Fung, YC; Schmid-Schonbein, GW (ed.); Woo, SL-Y (ed.); Zweifach, BW (ed.), Residual stress in arteries, 117-129 (1986), New York · doi:10.1007/978-1-4612-4866-8_9
[59] Chuong CJ, Fung YC (1986) On residual stresses in arteries. J Biomech Eng 108:189-192 · doi:10.1115/1.3138600
[60] Fung YC (1990) Biomechanics: motion, flow, stress, and growth. Springer, New York · Zbl 0743.92007 · doi:10.1007/978-1-4419-6856-2
[61] Rodriguez EK, Hoger A, McCulloch A (1994) Stress-dependent finite growth in soft elastic tissue. J Biomech 27:455-467 · doi:10.1016/0021-9290(94)90021-3
[62] Lee EH (1969) Elastic-plastic deformation at finite strain. J Appl Mech ASME 36:1-6 · Zbl 0179.55603 · doi:10.1115/1.3564580
[63] Gasser TC, Forsell C (2011) The numerical implementation of invariant-based viscoelastic formulations at finite strains. An anisotropic model for the passive myocardium. Comput Methods Appl Mech Eng 200:3637-3645 · Zbl 1239.74061 · doi:10.1016/j.cma.2011.08.022
[64] Humphrey JD, Rajagopal KR (2003) A constrained mixture model for arterial adaptations to a sustained step change in blood flow. Biomech Model Mechanobiol 2:109-126 · doi:10.1007/s10237-003-0033-4
[65] Maugin GA (1999) The thermomechanics of nonlinear irreversible behaviours. World Scientific, Singapore · Zbl 0945.80001
[66] Proseus TE, Ortega JKE, Boyer JS (1999) Separating growth from elastic deformation during cell enlargement. Plant Physiol 119:775-784 · doi:10.1104/pp.119.2.775
[67] Reese S, Govindjee S (1998) A theory of finite viscoelasticity and numerical aspects. Int J Solids Struct 35:3455-3482 · Zbl 0918.73028 · doi:10.1016/S0020-7683(97)00217-5
[68] Spencer AJM (2001) A theory of viscoplasticity for fabric-reinforced composites. J Mech Phys Solids 49:2667-2687 · Zbl 1032.74005 · doi:10.1016/S0022-5096(01)00073-4
[69] Proseus TE, Zhu G-L, Boyer JS (2000) Turgor, temperature and the growth of plant cells using Chara corallina as a model system. J Exp Bot 51:1481-1494 · doi:10.1093/jexbot/51.350.1481
[70] Thomas A, Tomos AD, Stoddart JL, Thomas H, Pollock CJ (1989) Cell expansion rate, temperature and turgor pressure in growing leaves of Lolium temulentum L. New Phytol 112:1-5 · doi:10.1111/j.1469-8137.1989.tb00301.x
[71] Mandel J (1971) Plasticité Classique et Viscoplasticité (CISM Lecture Notes, Udine, Italy). Springer, Vienna
[72] Lubliner J (1990) Plasticity theory. Macmillan, New York · Zbl 0745.73006
[73] Maugin GA (2011) Configurational forces: thermo-mechanics, physics, mathematics and numerics. CRC Press, Boca Raton · Zbl 1234.74002
[74] Epstein M, Maugin GA (1996) On the geometrical structure of anelasticity. Acta Mech 115:119-131 · Zbl 0856.73008 · doi:10.1007/BF01187433
[75] Proseus TE, Boyer JS (2007) Tension required for pectate chemistry to control growth in Chara corallina. J Exp Bot 58:4283-4292 · doi:10.1093/jxb/erm318
[76] Niklas KJ (1992) Plant biomechanics: an engineering approach to plant form and function. University of Chicago Press, Chicago
[77] Boyer JS (2009) Cell wall biosynthesis and the molecular mechanism of plant enlargement. Funct Plant Biol 36:383-394 · doi:10.1071/FP09048
[78] Proseus TE, Boyer JS (2005) Turgor pressure moves polysaccharides into growing cell walls of Chara corallina. Ann Bot 95:967-979 · doi:10.1093/aob/mci113
[79] Toole GA, Gunning PA, Parker ML, Smith AC, Waldron KW (2001) Fracture mechanics of the cell wall of Chara corallina. Planta 212:606-611 · doi:10.1007/s004250000425
[80] Milani P, Gholamirad M, Traas J, Arnéodo A, Boudaoud A, Argoul F, Hamant O (2011) In vivo analysis of local wall stiffness at the shoot apical meristem in Arabidopsis using atomic force microscopy. Plant J 67:1116-1123 · doi:10.1111/j.1365-313X.2011.04649.x
[81] Cousins WJ (1978) Young’s modulus of hemicelluloses as related to moisture content. Wood Sci Techol 12:161-167 · doi:10.1007/BF00372862
[82] Wang CX, Wang L, Thomas CR (2004) Modelling the mechanical properties of single suspension-cultured tomato cells. Ann Bot 93:443-453 · doi:10.1093/aob/mch062
[83] Wei C, Lintilhac PM, Tanguay JJ (2001) An insight into cell elasticity and load-bearing ability: measurement and theory. Plant Physiol 126:1129-1138 · doi:10.1104/pp.126.3.1129
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.