×

Bianchi type-I cosmological models for biharmonic particles and its transformations in spacetime. (English) Zbl 1315.83020

Summary: In this article, we study timelike biharmonic particles in Bianchi type-I (B-I) cosmological model spacetime. We give a geometrical description of timelike biharmonic particle in spacetime. Moreover, we obtain transformations this particles. Some physical and geometric behaviour of these particles are also discussed in Bianchi type-I (B-I) cosmological model spacetime.

MSC:

83C20 Classes of solutions; algebraically special solutions, metrics with symmetries for problems in general relativity and gravitational theory
83F05 Relativistic cosmology
83C40 Gravitational energy and conservation laws; groups of motions
83C10 Equations of motion in general relativity and gravitational theory
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Adlav, K.S.: LRS Bianchi Type-I universe with anisotropic dark energy in lyra geometry. Int. J. Astron. Astrophys. 1, 204-209 (2011) · doi:10.4236/ijaa.2011.14026
[2] Asil, V.: Velocities of dual homothetic exponential motions in D3. Iran. J. Sci. Technol. Trans. A: Sci. 31, 265-271 (2007)
[3] Caltenco, J.H., Linares, R., López-Bonilla, J. L.: Intrinsic geometry of curves and the Lorentz equation. Czech. J. Phys. 52, 839-842 (2002) · Zbl 1054.14020 · doi:10.1023/A:1016213425415
[4] Casama, R, de Melo, C.A.M., Pimentel, B.M.: Spinorial field and lyra geometry. Astrophys. Space Sci. 305, 125-132 (2006) · doi:10.1007/s10509-006-9048-5
[5] Collins, C.B., Glass, E.N., Wilkinson, D.A.: Exact spatially homogeneous cosmologies. Gen. Relativ. Gravit. 12, 805-823 (1980) · Zbl 0453.53046 · doi:10.1007/BF00763057
[6] Eells, J., Lemaire, L.: A report on harmonic maps. Bull. London Math. Soc. 10, 1-68 (1978) · Zbl 0401.58003 · doi:10.1112/blms/10.1.1
[7] Einstein, A.: Relativity: The Special and General Theory. Henry Holt, New York (1920) · JFM 48.1059.07
[8] Hehl, F.W., Obhukov, Y.: Foundations of Classical Electrodynamics. Birkhauser, Basel (2003) · Zbl 1032.78001 · doi:10.1007/978-1-4612-0051-2
[9] Jiang, G.Y.: 2-harmonic maps and their first and second variational formulas. Chin. Ann. Math. Ser. A 7 (4), 389-402 (1986) · Zbl 0628.58008
[10] Möller, C.: The Theory of Relativity. Clarendon, Oxford (1952) · Zbl 0047.20602
[11] Körpınar, T., Turhan, E.: Time-canal surfaces around Biharmonic particles and its Lorentz transformations in Heisenberg spacetime. Int. J. Theor. Phys. 53, 1502-1520 (2014) · Zbl 1305.83018 · doi:10.1007/s10773-013-1950-3
[12] Körpınar, T., Turhan, E.: On characterization of B-canal surfaces in terms of biharmonic B-slant helices according to Bishop frame in Heisenberg group Heis 3. J. Math. Anal. Appl. 382, 57-65 (2011) · Zbl 1226.53002 · doi:10.1016/j.jmaa.2011.04.029
[13] Körpınar, T., Turhan, E., Asil, V.: Tangent Bishop spherical images of a biharmonic B-slant helix in the Heisenberg group Heis 3. Iran. J. Sci. Technol. Trans. A: Sci. 35, 265-271 (2012)
[14] Körpınar, T., Turhan, E.: Tubular surfaces around timelike Biharmonic curves in Lorentzian Heisenberg group Heis 3. Analele Stiintifice ale Universitatii Ovidius Constanta Seria Matematica 20, 431-445 (2012) · Zbl 1274.53002
[15] Körpınar, T., Turhan, E.: Time-tangent surfaces around Biharmonic particles and its Lorentz transformations in Heisenberg spacetime. Int. J. Theor. Phys. 52, 4427-4438 (2013) · Zbl 1282.78005 · doi:10.1007/s10773-013-1761-6
[16] Körpınar, T., Turhan, E.: A new version of time-pencil surfaces around Biharmonic particles and its Lorentz transformations in Heisenberg spacetime. Int. J. Theor. Phys. 53, 2288-2303 (2014) · Zbl 1391.70055
[17] Lyra, G.: Sber eine Modifikation der Riemannschen Geometrie. Math. Z. 54, 52-64 (1951) · Zbl 0042.15902 · doi:10.1007/BF01175135
[18] O’Neill, B.: Semi-Riemannian Geometry. Academic Press, New York (1983) · Zbl 0531.53051
[19] Pradhan, A., Singh, A.K.: Anisotropic Bianchi Type-I string cosmological models in normal gauge for Lyra’s manifold with constant deceleration parameter. Int. J. Theor. Phys. 50, 916-933 (2011) · Zbl 1211.83024 · doi:10.1007/s10773-010-0636-3
[20] Pradhan, A., Ram, P.: A plane-symmetric magnetized inhomogeneous cosmological models of perfect fluid distribution with variable magnetic permeability in lyra geometry. Int. J. Theor. Phys. 48, 3188-3201 (2009) · Zbl 1187.83063 · doi:10.1007/s10773-009-0120-0
[21] Rahaman, F., Bhui, B., Bag, G.: Can Lyra geometry explain the singularity free as well as accelerating universe? Astrophys. Space Sci. 295, 507-513 (2005) · doi:10.1007/s10509-005-1284-6
[22] Ringermacher, H.: Intrinsic geometry of curves and the Minkowski force. Phys. Lett. A 74, 381-383 (1979) · doi:10.1016/0375-9601(79)90229-9
[23] Singh, C.P., Kumar, S.: Bianchi type-II cosmological models with constant deceleration parameter. Int. J. Mod. Phys. D 15, 419-438 (2006) · Zbl 1101.83338 · doi:10.1142/S0218271806007754
[24] Trocheris, M.G.: Electrodynamics in a rotating frame of reference. Philo. Mag. 7, 1143-1155 (1949) · Zbl 0033.42401 · doi:10.1080/14786444908521750
[25] Turhan, E., Körpınar, T.: On characterization of timelike horizontal Biharmonic curves in the Lorentzian Heisenberg group Heis 3. Zeitschrift für Naturforschung A- A J. Phys. Sci. 65a, 641-648 (2010)
[26] Turhan, E., Körpınar, T.: Position vector of spacelike biharmonic curves in the Lorentzian Heisenberg group Heis 3. Analele Stiintifice ale Universitatii Ovidius Constanta Seria Matematica 19, 285-296 (2011) · Zbl 1224.53002
[27] Turhan, E., Körpınar, T.: On Characterization Canal Surfaces around Timelike Horizontal Biharmonic Curves in Lorentzian Heisenberg Group Heis 3. Zeitschrift für Naturforschung A- A J. Phys. Sci. 66a, 441-449 (2011) · doi:10.5560/ZNA.2011.66a0441
[28] Zeyauddin, M., Ram, S.: Bianchi type V imperfect flud cosmological models with heat flow. Fizika B 18, 87-98 (2009)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.