×

A topology optimization method for geometrically nonlinear structures with meshless analysis and independent density field interpolation. (English) Zbl 1311.74098

Summary: Based on the element-free Galerkin (EFG) method, an analysis-independent density variable approach is proposed for topology optimization of geometrically nonlinear structures. This method eliminates the mesh distortion problem often encountered in the finite element analysis of large deformations. The topology optimization problem is formulated on the basis of point-wise description of the material density field. This density field is constructed by a physical meaning-preserving interpolation with the density values of the design variable points, which can be freely positioned independently of the field points used in the displacement analysis. An energy criterion of convergence is used to resolve the well-known convergence difficulty, which would be usually encountered in low density regions, where displacements oscillate severely during the optimization process. Numerical examples are given to demonstrate the effectiveness of the developed approach. It is shown that relatively clear optimal solutions can be achieved, without exhibiting numerical instabilities like the so-called “layering” or “islanding” phenomena even in large deformation cases. This study not only confirms the potential of the EFG method in topology optimization involving large deformations, but also provides a novel topology optimization framework based on element-free discretization of displacement and density fields, which can also easily incorporate other meshless analysis methods for specific purposes.

MSC:

74P15 Topological methods for optimization problems in solid mechanics
74S05 Finite element methods applied to problems in solid mechanics
65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
74P05 Compliance or weight optimization in solid mechanics
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bendsoe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Compu Methods Appl Mech Eng 71(2):197-224 · Zbl 0671.73065 · doi:10.1016/0045-7825(88)90086-2
[2] Eschenauer HA, Olhoff N (2001) Topology optimization of continuum structures: a review. Appl Mech Rev 54(4):331-390 · doi:10.1115/1.1388075
[3] Bendsoe MP, Sigmund O (1999) Material interpolation schemes in topology optimization. Arch Appl Mech 69(9-10):635-654 · Zbl 0957.74037
[4] Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Structl Optim 4(3-4):250-252 · doi:10.1007/BF01742754
[5] Zhou M, Rozvany GIN (1991) The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput Methods Appl Mech Eng 89(1-3):309-336 · doi:10.1016/0045-7825(91)90046-9
[6] Bendsøe MP (1995) Optimization of structural topology shape and material. Springer, New York · Zbl 0822.73001 · doi:10.1007/978-3-662-03115-5
[7] Allaire G, Jouve F, Toader A-M (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Physics 194(1):363-393 · Zbl 1136.74368 · doi:10.1016/j.jcp.2003.09.032
[8] Wang MY, Wang XM, Guo DM (2003) A level set method for structural topology optimization. Compu Methods Appl Mech Eng 192(1-2):227-246 · Zbl 1083.74573 · doi:10.1016/S0045-7825(02)00559-5
[9] Belytschko T, Xiao SP, Parimi C (2003) Topology optimization with implicit functions and regularization. Int J Numer Methods Eng 57:1177-1196 · Zbl 1062.74583 · doi:10.1002/nme.824
[10] Xie YM, Steven GP (1993) A simple evolutionary procedure for structural optimization. Compu Struct 49(5):885-896 · doi:10.1016/0045-7949(93)90035-C
[11] Jog C (1996) Distributed-parameter optimization and topology design for non-linear thermoelasticity. Comput Methods Appl Mech Eng 132(1-2):117-134 · Zbl 0890.73045 · doi:10.1016/0045-7825(95)00990-6
[12] Bruns TE, Tortorelli DA (1998) Topology optimization of geometrically nonlinear structures and compliant mechanisms. In: Proceedings of the 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary analysis and optimization. St. Louis, MI, pp 1874-1882
[13] Buhl T, Pedersen CBW, Sigmund O (2000) Stiffness design of geometrically nonlinear structures using topology optimization. Struct Multidiscip Optim 19(2):93-104 · doi:10.1007/s001580050089
[14] Gea HC, Luo JH (2001) Topology optimization of structures with geometrical nonlinearities. Comput Struct 79(20-21):1977-1985 · doi:10.1016/S0045-7949(01)00117-1
[15] Pedersen CBW, Buhl T, Sigmund O (2001) Topology synthesis of large-displacement compliant mechanisms. Int J Numer Methods Eng 50(12):2683-2705 · Zbl 0988.74055 · doi:10.1002/nme.148
[16] Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part I: one-material structures. Comput Methods Appl Mech Eng 190(49-50):6577-6604 · Zbl 1116.74407 · doi:10.1016/S0045-7825(01)00251-1
[17] Sigmund O (2001) Design of multiphysics actuators using topology optimization—Part II: two-material structures. Comput Methods Appl Mech Eng 190(49-50):6605-6627 · Zbl 1116.74407 · doi:10.1016/S0045-7825(01)00252-3
[18] Bruns TE, Sigmund O, Tortorelli DA (2002) Numerical methods for the topology optimization of structures that exhibit snap-through. Int J Numer Methods Eng 55(10):1215-1237 · Zbl 1027.74053 · doi:10.1002/nme.544
[19] Luo Z, Tong L (2008) A level set method for shape and topology optimization of large-displacement compliant mechanisms. Int J Numer Methods Eng 76(6):862-892 · Zbl 1195.74134 · doi:10.1002/nme.2352
[20] Kang Z, Luo Y (2009) Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput Methods Appl Mech Eng 198(41-44):3228-3238 · Zbl 1230.74153 · doi:10.1016/j.cma.2009.06.001
[21] Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443-3459 · Zbl 1014.74057 · doi:10.1016/S0045-7825(00)00278-4
[22] Cho S, Jung H-S (2003) Design sensitivity analysis and topology optimization of displacement-loaded non-linear structures. Comput Methods Appl Mech Eng 192(22-24):2539-2553 · Zbl 1050.74037 · doi:10.1016/S0045-7825(03)00274-3
[23] Bruns TE, Tortorelli DA (2003) An element removal and reintroduction strategy for the topology optimization of structures and compliant mechanisms. Int J Numer Methods Eng 57(10):1413-1430 · Zbl 1062.74589 · doi:10.1002/nme.783
[24] Yoon GH, Kim YY (2005) Element connectivity parameterization for topology optimization of geometrically nonlinear structures. Int J Solids Struct 42(7):1983-2009 · Zbl 1111.74035 · doi:10.1016/j.ijsolstr.2004.09.005
[25] Belytschko T, Lu YY, Gu L (1994) Element-free Galerkin methods. Int J Numer Methods Eng 37(2):229-256 · Zbl 0796.73077 · doi:10.1002/nme.1620370205
[26] Liu WK, Jun S, Zhang YF (1995) Reproducing kernel particle methods. Int J Numer Methods Fluids 20(8-9):1081-1106 · Zbl 0881.76072 · doi:10.1002/fld.1650200824
[27] Belytschko T, Krongauz Y, Organ D, Fleming M, Krysl P (1996) Meshless methods: an overview and recent developments. Comput Methods Appl Mech Eng 139(1-4):3-47 · Zbl 0891.73075 · doi:10.1016/S0045-7825(96)01078-X
[28] Chen JS, Pan CH, Wu CT, Liu WK (1996) Reproducing kernel particle methods for large deformation analysis of non-linear structures. Comput Methods Appl Mech Eng 139(1-4):195-227 · Zbl 0918.73330 · doi:10.1016/S0045-7825(96)01083-3
[29] Liu GR, Gu YT (2005) An Introduction to meshfree methods and their programming. Springer, Berlin
[30] Chen JS, Pan C, Wu CT (1997) Large deformation analysis of rubber based on a reproducing kernel particle method. Comput Mech 19(3):211-227 · Zbl 0888.73073 · doi:10.1007/s004660050170
[31] Cho S, Kwak J (2006) Topology design optimization of geometrically non-linear structures using meshfree method. Compu Methods Appl Mech Eng 195(44-47):5909-5925 · Zbl 1124.74039 · doi:10.1016/j.cma.2005.08.015
[32] Du Y, Luo Z, Tian Q, Chen L (2009) Topology optimization for thermo-mechanical compliant actuators using mesh-free methods. Eng Optim 41(8):753-772 · doi:10.1080/03052150902834989
[33] Paulino GH, Le CH (2009) A modified Q4/Q4 element for topology optimization. Struct Multidiscip Optim 37(3):255-264 · Zbl 1062.74583
[34] Zhou JX, Zou W (2008) Meshless approximation combined with implicit topology description for optimization of continua. Struct Multidiscip Optimization 36(4):347-353 · Zbl 1173.93343 · doi:10.1007/s00158-007-0168-5
[35] Luo Z, Zhang N, Wang Y, Gao W (2013) Topology optimization of structures using meshless density variable approximants. Int J Numer Methods Eng 93(4):443-464 · Zbl 1352.74247 · doi:10.1002/nme.4394
[36] Kang Z, Wang Y (2011) Structural topology optimization based on non-local Shepard interpolation of density field. Comput Methods Appl Mech Eng 200(49-52):3515-3525 · Zbl 1239.74079 · doi:10.1016/j.cma.2011.09.001
[37] Kang Z, Wang Y (2012) A nodal variable method of structural topology optimization based on Shepard interpolant. Int J Numer Methods Eng 90(3):329-342 · Zbl 1242.74072 · doi:10.1002/nme.3321
[38] Haug EJ, Choi KK (1986) Design sensitivity analysis of structural systems. Academic Press, New York · Zbl 0618.73106
[39] Choi KK, Kim NH (2005) Structural sensitivity analysis and optimization I-linear systems. Springer, New York
[40] Kim NH, Choi KK, Chen JS, Park YH (2000) Meshless shape design sensitivity analysis and optimization for contact problem with friction. Comput Mech 25(2-3):157-168 · Zbl 0982.74053 · doi:10.1007/s004660050466
[41] Kim NH, Choi KK, Chen JS (2001) Die shape design optimization of sheet metal stamping process using meshfree method. Int J Numer Methods Eng 51(12):1385-1405 · Zbl 1065.74584 · doi:10.1002/nme.181
[42] Bathe KJ (1996) Finite element procedures. Prentice-Hall, Upper Saddle River
[43] Belytschko T, Liu WK, Moran B (2000) Nonlinear finite elements for continua and structures. Wiley, Chichester · Zbl 0959.74001
[44] Bathe K-J, Wilson EL (1975) Finite element formulations for large deformation dynamic analysis. Int J Numer Methods Eng 9:353-386 · Zbl 0304.73060 · doi:10.1002/nme.1620090207
[45] Crisfield A (1997) Non-linear finite element analysis of solids and structures, vol 1-2. Wiley, Chichester · Zbl 0855.73001
[46] Jog CS, Haber RB (1996) Stability of finite element models for distributed-parameter optimization and topology design. Comput Methods Appl Mech Eng 130(3-4):203-226 · Zbl 0861.73072 · doi:10.1016/0045-7825(95)00928-0
[47] Rahmatalla SF, Swan CC (2004) A Q4/Q4 continuum structural topology optimization implementation. Struct Multidiscip Optim 27(1-2):130-135 · doi:10.1007/s00158-003-0365-9
[48] Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24(2):359-373 · Zbl 0602.73091 · doi:10.1002/nme.1620240207
[49] Haber RB, Jog CS, Bendsoe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Optim 11(1):1-12 · doi:10.1007/BF01279647
[50] Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Optim 16(1):68-75 · doi:10.1007/BF01214002
[51] Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143-2158 · Zbl 0971.74062 · doi:10.1002/nme.116
[52] Yoon GH, Kim YY, Bendsoe MP, Sigmund O (2004) Hinge-free topology optimization with embedded translation-invariant differentiable wavelet shrinkage. Struct Multidiscip Optim 27(3):139-150 · doi:10.1007/s00158-004-0378-z
[53] Liu WK, Li S, Belytschko T (1997) Moving least-square reproducing kernel methods (I) Methodology and convergence. Comput Methods Appl Mech Eng 143(1-2):113-154 · Zbl 0883.65088 · doi:10.1016/S0045-7825(96)01132-2
[54] Lazarov BS, Schevenels M, Sigmund O (2012) Topology optimization with geometric uncertainties by perturbation techniques. Int J Numer Methods Eng 90(11):1321-1336 · Zbl 1242.74075 · doi:10.1002/nme.3361
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.