×

Large eddy simulation of a fully developed non-isothermal turbulent channel flow. (English) Zbl 1356.76126

Summary: Purpose{ } - The purpose of this paper is to numerically study heated channel flow using direct numerical simulation (DNS) and large eddy simulation (LES) method. Using different domain size and different grid resolution it is show that filtering procedure is influenced and may results in very different solutions. { }Design/methodology/approach{ } - Turbulent non-isothermal fully developed channel flow has been investigated using LES. The filtered Navier-Stokes and energy equations were numerically solved with dynamic subgrid scale (SGS) model, standard Smagorinsky model or without additional model for the turbulent SGS stress and heat flux required to close the governing equations. { }Findings{ } - The numerical LES results in comparison with the DNS data demonstrate that the LES computations may not always offers a reliable prediction of non-isothermal turbulent flow in open channel. It has been found that, even though the models reproduces accurately results for the flow field the thermal field computed using LES do not necessary match the DNS results. Introducing SGS model for scalar do not always show large improvement. One of the reason is thickness of hydrodynamic and thermal boundary layer. In the cases when boundary layers are very different it is not easy optimally set up control volumes in the domain. { }Originality/value{ } - This is one of the first instance in which a results of numerical computations for different grid resolution, different stretching, SGS model is employed for non-isothermal turbulent channel flow. It shows that in the cases when boundary layers hydrodynamic and thermal are very different it is hardly find optimal grid resolution or stretching

MSC:

76F65 Direct numerical and large eddy simulation of turbulence
PDFBibTeX XMLCite
Full Text: DOI

References:

[1] Bose, S.T. , Moin, P. and You, D. (2010), ”Grid-independent large-eddy simulation using explicit filtering”, Physics of Fluids, Vol. 22, p. -. · Zbl 1356.76126 · doi:10.1108/HFF-02-2013-0043
[2] Clark, R.A. , Ferziger, J.H. and Reynolds, W.C. (1979), ”Evaluation of subgrid-scale models using accurately simulated turbulent flow”, J. Fluid Mech, Vol. 91, pp. 1-16. , · Zbl 0394.76052 · doi:10.1108/HFF-02-2013-0043
[3] Germano, M. , Piomelli, U. , Moin, P. and Cabot, W.H. (1991), ”A dynamic subgrid-scale eddy viscosity mode”, Phys Fluids A, Vol. 3, pp. 1760-1765. · Zbl 0825.76334 · doi:10.1108/HFF-02-2013-0043
[4] Guerts, B.J. and Holm, D.D. (2003), ”Regularization modeling for large-eddy simulation”, Phys. Fluids, Vol. 15, pp. 13-16. , · Zbl 1356.76126 · doi:10.1108/HFF-02-2013-0043
[5] Jaszczur, M. , Geurts, B.J. and Kuerten, J.G.M. (2011), ”Relevance of approximate deconvolution for one-way coupled motion of inertial particles in LES of turbulent channel flow”, in Salvetti, M.V.et al. (Eds), Quality and Reliability of Large-Eddy Simulations II, ERCOFTAC Series Springer, pp. 181-190. · Zbl 1303.76041
[6] Jimenez, C. , Ducros, F. , Cuenot, B. and Bedat, B. (2001), ”Subgrid scale variance and dissipation of a scalar field in large eddy simulations”, Phys. Fluids, Vol. 13, pp. 1748-1754. , · Zbl 1356.76126 · doi:10.1108/HFF-02-2013-0043
[7] Kasagi, N. , Tomita, Y. and Kuroda, A. (1992), ”Direct numerical simulation of passive scalar field in a turbulent channel flow”, J. Heat Transfer, Vol. 114, pp. 598-607. , · Zbl 1356.76126 · doi:10.1108/HFF-02-2013-0043
[8] Kawamura, H. , Abe, H. and Matsuo, Y. (1999), ”DNS of turbulent heat transfer in channel flow with respect to Reynolds and Prandtl number effects”, Int. J. Heat Fluid Flow, Vol. 20, pp. 196-207. , · Zbl 1356.76126 · doi:10.1108/HFF-02-2013-0043
[9] Kawamura, H. , Abe, H. and Shingai, K. (2000), ”DNS of turbulence and heat transport in a channel flow with different Reynolds and Prandtl numbers and boundary conditions, turbulence”, Heat and Mass Transfer, Vol. 3, pp. 15-32.
[10] Lu, D.M. and Hetsroni, G. (1995), ”Direct numerical simulation of a turbulent open channel flow with passive heat transfer”, Int. J. Heat and Mass Transfer, Vol. 38, pp. 3241-3251. , · Zbl 1356.76126 · doi:10.1108/HFF-02-2013-0043
[11] Moin, P. , Squires, K. , Cabot, W. and Lee, S. (1991), ”A dynamic subgrid-scale model for compressible turbulence and scalar transport”, Phys. Fluids A, Vol. 3, pp. 2746-2757. · Zbl 0753.76074 · doi:10.1108/HFF-02-2013-0043
[12] Pallares, J. and Davidson, L. (2002), ”Large-eddy simulations of turbulent heat transfer in stationary and rotating square ducts”, Phys. Fluids, Vol. 14, pp. 2804-2816. , · Zbl 1185.76293 · doi:10.1108/HFF-02-2013-0043
[13] Pierce, C. and Moin, P. (1998), ”A dynamic model for subgrid-scale variance and dissipation rate of a conserved scalar”, Phys. Fluids, Vol. 12, pp. 3041-3044. , · Zbl 1185.76781 · doi:10.1108/HFF-02-2013-0043
[14] Pozorski, J. , Knorps, M. and łuniewski, M. (2011), ”Effects of subfilter velocity modelling on dispersed phase in LES of heated channel flow”, J. Phys., Conf. Ser, Vol. 333 No. 012014, pp. 1-6.
[15] Rasam, A. , Brethouwer, G. and Johansson, A.V. (2011), ”Subgrid-scale model and resolution inuences in large eddy simulations of channel flow”, Direct and Large-Eddy Simulation VIII, ERCOFTAC Series 15 Springer Science Business Media.
[16] Shin, S.Y. , Cho, Y.I. , Gringrich, W.K. and Shyy, W. (1993), ”Numerical study of laminar heat transfer with temperature dependent fluid viscosity in a 2:1 rectangular duct”, Int. J. Heat and Mass Transfer, Vol. 36, pp. 4365-4373. , · Zbl 1356.76126 · doi:10.1108/HFF-02-2013-0043
[17] Smagorinsky, J. (1963), ”General circulation experiments with the primitive equations”, Monthly Weather Rev, Vol. 91, pp. 99-164. · Zbl 1356.76126 · doi:10.1108/HFF-02-2013-0043
[18] Vasilyev, O.V. , Lund, T.S. and Moin, P. (1998), ”A general class of commutative filters for LES in complex geometries”, J. Comput. Phys, Vol. 146, pp. 82-104. , · Zbl 0913.76072 · doi:10.1108/HFF-02-2013-0043
[19] Wang, W-P. and Pletcher, R.H. (1996), ”On the large eddy simulation of a turbulent channel flow with significant heat transfer”, Phys. Fluids, Vol. 8, pp. 3354-3366. , · Zbl 1027.76607 · doi:10.1108/HFF-02-2013-0043
[20] Zhong, F.Q. , Liu, N.S. , Lu, X.Y. and Zhuang, L.X. (2002), ”An improved dynamic subgrid-scale model and its application to large eddy simulation of stratified channel flows”, Sci. China, Vol. 45, pp. 888-899.
[21] Cook, A. and Bushe, W.K. (1999), ”A subgrid-scale model for the scalar dissipation rate in nonpremixed combustion”, Phys. Fluids, Vol. 11, pp. 746-748. , · Zbl 1147.76368 · doi:10.1108/HFF-02-2013-0043
[22] Debusschere, B. and Rutland, C.J. (2004), ”Turbulent scalar transport mechanisms in plane channel and Couette flows”, Int. J. Heat and Mass Transfer, Vol. 47, pp. 1771-1781. , · Zbl 1045.76529 · doi:10.1108/HFF-02-2013-0043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.